
1.2 The Integers

Definition. Integers can be written as differences of natural numbers. The set of
integers Z = {0, 1,−1, 2,−2, 3,−3, . . .} will therefore be defined as certain equiva-
lence classes of the two-fold Cartesian product of N.

We define a relation on N× N as follows:

(a, b) ∼ (c, d) if and only if a+ d = b+ c.

The next three tasks show that “∼” defines an equivalence relation on N× N:

Task 1.24

1. “∼” is reflexive.

2. “∼” is symmetric12.

Task 1.25

“∼” is transitive.

We will denote equivalence classes as follows:

(a, b)
∼
:= {(c, d) | (c, d) ∼ (a, b)}.

The set of integers Z is the set of all equivalence classes obtained in this manner:

Z = {(a, b)
∼
| a, b ∈ N}.

Addition of integers will be defined component-wise:

(a, b)
∼
+ (c, d)

∼
= (a+ c, b+ d)

∼
.

12A relation ∼ on A is called symmetric, if for all a, b ∈ A the following holds: a ∼ b implies

b ∼ a.
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A set G with a binary operation ⋆ is called an Abelian group if ⋆ is commutative
and associative, if (A, ⋆) has a neutral element n satisfying g ⋆ n = g for all g ∈ G,
and if (A, ⋆) has inverse elements, i.e., for all g ∈ G there is an h ∈ G satisfying
g ⋆ h = n.

The next five tasks will show that Z is an Abelian group with respect to addition.

Task 1.26

Show that the addition of integers is well-defined (i.e. independent of the chosen
representatives of the equivalence classes).

Task 1.27

Show that the addition of integers is commutative.

Task 1.28

Show that the addition of integers is associative.

Task 1.29

Show that the addition of integers has (0, 0)
∼
as its neutral element.

Task 1.30

Show that for all a, b ∈ N the following holds: (a, b)
∼
+ (b, a)

∼
= (0, 0)

∼
. Thus

every element in Z has an additive inverse element.
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Task 1.31

1. The map φ : N→ Z defined by φ(n) = (n, 0)
∼
is injective.

2. For all m,n ∈ N the following holds: φ(m) + φ(n) = φ(m+ n).

From now on we will identify N with φ(N).

Task 1.32

1. Define integer multiplication and show that the multiplication is well-
defined.

2. Show that 1 = (1, 0)
∼
is the neutral element with respect to multiplication.

It is not hard to show that multiplication is commutative and associative. Moreover
the distributive law holds in Z.

Task 1.33

With φ as defined in Task 1.31, show that

φ(m) · φ(n) = φ(m · n).

Last not least we will define a relation on Z as follows:

m ≤ n if and only if n+ (−m) ∈ N.
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Task 1.34

Let a, b, c, d ∈ N. Then (a, b)
∼
≤ (c, d)

∼
if and only if there is a k ∈ N such that

(a+ k, b) ∼ (c, d).

The next two tasks show that “≤” is a total order on Z:

Task 1.35

Show that “≤” is reflexive, anti-symmetric and transitive on Z.

Task 1.36

m ≤ n or n ≤ m for all m,n ∈ Z.

Task 1.37

If m ≤ n, then m+ k ≤ n+ k for all k ∈ Z.

Task 1.38

If m ≤ n and 0 ≤ k, then m · k ≤ n · k.
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1.3 The Rational Numbers

Once again we define the next larger set as certain equivalence classes. On Z×Z\{0},
we define a relation ∼= as follows:

(a, b) ∼= (c, d) if and only if a · d = b · c.

We write equivalence classes in the familiar way

a

b
= {(c, d) | (c, d) ∼= (a, b)},

and denote the rational numbers by

Q =
{a

b
| a ∈ Z, b ∈ Z \ {0}

}

.

For integers n we write n instead of n

1
.

We define an order on Q as follows:

0 ≤
a

b
if and only if (0 ≤ a and 0 < b) or (a ≤ 0 and b < 0).

For p, q ∈ Q, we write p ≤ q if 0 ≤ q − p.

With the natural addition and multiplication

a

b
+

c

d
=

ad+ bc

bd
, and

a

b
·
c

d
=

ac

bd

and the order above, the set of rational numbers becomes an ordered field:

Theorem. (Q,+, ·,≤) has the following properties:

1. (Q,+) is an Abelian group with neutral element 0.

2. (Q \ {0}, ·) is an Abelian group with neutral element 1.

3. (a+ b) · c = a · c+ b · c.

4. (Q,≤) is a total order.

5. (a) a ≤ b implies a+ c ≤ b+ c for all a, b, c ∈ Q.
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(b) a ≤ b implies a · c ≤ b · c for all a, b, c ∈ Q with 0 ≤ c.

Let us write a < b if a ≤ b and a 6= b. We will say that a is positive, if 0 < a.
Similarly, a is called negative, if 0 < −a.

Task 1.39

Let a, b ∈ Q, and assume a > b and b > 0. Then a2 > b2.

Task 1.40

Q is dense in itself : For all a, b ∈ Q with a < b there is a c ∈ Q with a < c < b.
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