
Laboratories in Mathematical
Experimentation:

A Bridge to Higher Mathematics

The Mount Holyoke Mathematics Department
(and J. William Bruce)

ii

i

This book is dedicated to Elizabeth Bergmann Hutchcroft, Mount Holyoke
College class of 1935, and to the memory of her late husband, C. Robert
Hutchcroft. Mrs. Hutchcroft, a mathematics major at Mount Holyoke, earned
a master’s degree in mathematics at Teachers’ College, Columbia University,
and went on to teach mathematics at her high school alma mater, the Lincoln
School. She has established the Robert and Elizabeth Bergmann Hutchcroft
Endowment Fund to advance the study of mathematics at Mount Holyoke.
The Fund supports curricular innovation, faculty research leaves, faculty de-
velopment, and necessary equipment and technology for the department. Mrs.
Hutchcroft’s generosity ensures that projects like the Laboratory in Mathemat-
ical Experimentation and this text will continue to flourish at Mount Holyoke
and enrich the mathematics education of our students. We are profoundly
grateful.

Preface

In 1989, after much discussion, we added a new sophomore-level “bridge”
course to our curriculum. Just as it is difficult to learn to write unless you
have something you want to say, so too, we reasoned, it is difficult to learn
to construct a proof unless you have something you want to prove. We
wanted to share with our students the joy, and the frustration, of mathemat-
ical discovery. We wanted to immerse them in exploration of mathematical
phenomena, to have them discover things for themselves, to have them make
conjectures and construct arguments in support of those conjectures. We
wanted them to discover things that they understood might well be false and
which, therefore, needed proof. We wanted them to encounter a broad range
of mathematical phenomena early in their mathematical careers and to take
with them a solid base of experience on which to build future understanding.

Our course, which we called the Laboratory in Mathematical Experimen-
tation and which students called “the Lab”, succeeded beyond any of our
expectations. After just one year, we found students much more likely to
read mathematics actively, more likely to dive in and “mess around” with a
hard problem, more likely to ask questions and look for patterns, and more
likely to formulate an argument clearly. Students who have taken the Lab
do better in the real analysis and abstract algebra courses required for the
mathematics major than those who have not. Moreover, both students and
faculty enjoy the course. We find it easy to teach: reading papers and grad-
ing is onerous, but preparation is trivial and office hour time is modest.
Students enjoy setting their own agendas and inevitably become caught up
in their investigations. The atmosphere of collegiality and shared inquiry
sharpens students’ interest in mathematics and helps them think of them-
selves as mathematicians. We now require the course of every mathematics
major.

i

ii

This book grows out of the Lab course and consists of a collection of
sixteen laboratory investigations in mathematics accessible to beginning col-
lege students. Each investigation invites students to observe and to look for
patterns and encourages them to establish language to describe, conjecture,
and analyze the phenomena under study. Each investigation leads to math-
ematics which students will encounter in later courses and seeks to supply
the student with a repertoire of concrete examples to nourish their intuition.
Most will also result in the student discovering some things she believes to
be true and wants to prove, but cannot. In a typical offering of the Lab,
students do six or seven of the investigations.

This book could be used to offer a course like ours. It could also be
used to supplement other courses or as a source for students’ independent
projects. The sixteen investigations are almost all independent of each other,
and most do not require calculus (the exceptions to both statements are noted
in the Introduction). All but two of the investigations require a computer
(or programmable calculator). The accompanying instructor’s manual says
more about each of the investigations. It also gives much more detail about
the Lab course.

This work is truly a collective effort. Every mathematician and statisti-
cian in our department has had a hand in shaping it and the course from
which it grew. When it comes to the Lab, we also consider J. William Bruce
of the University of Liverpool to be an honorary department member, since
while on sabbatical at Mount Holyoke he taught the Lab, made important
contributions to every chapter he used, and contributed several additional
projects.

It is a pleasure to acknowledge the support of the National Science Foun-
dation, first for laboratory computers, then for curriculum development and
writing, and finally for dissemination through their Undergraduate Faculty
Enhancement program. We are also grateful for NSF’s insistence that we
form an Advisory Board for this project. Advice, suggestions and encour-
agement from Thomas Cecil (College of the Holy Cross), Gregory Fredricks
(Lewis and Clark College), Gregory Hill (University of North Texas), and Ja-
cob Sturm (Rutgers University, Newark) have been invaluable, and we thank
them. We also gratefully acknowledge support from the Sloan Foundation
and Hewlett Packard.

We also thank several other colleagues. Mizan Kahn, now at Eastern

iii

Connecticut University, taught and commented on an early version of the
Lab. More recently Patrick Fitzpatrick, a sabbatical visitor from University
College Cork, taught the Lab and contributed many ideas, including the
“warm-up” exercise on diagonals of rectangles. Our students have also helped
us in many ways, especially the junior and senior majors in the fall of 1988
who helped design and test the projects used in the very first offering of
the Lab: Tessa Campbell, Julie Derynda, Barbara Hswe, Kristine Kusek,
Kathleen Malone, and Ke Wu.

We received many valuable suggestions from the participants in our NSF-
UFE workshop in June 1996, as we were preparing the final version of this
text. We thank Mysore Jagadish and Pedro Suarez (Barry University), Olu-
sola Akinyele (Bowie State University), Terrence Bisson and Donald Girod
(Canisius College), Barbara Reynolds (Cardinal Stritch College), Alan Levine
and Ben Shanfelder (student) (Franklin and Marshall College), John Kel-
lett (Gettysburg College), Lynnell Matthews (Howard Community College),
Kathy Kraft and Robert Woodle (Jamestown College), Douglas Burkholder
and Mary Flagg (McPherson College), Arup Mukherjee and Ethel Wheland
(Pennsylvania State University), Steve Cohen and John Currano (Roosevelt
University), Donald Miller (Saint Mary’s College), Patricia Army and Bar-
bara Becker (Saint Xavier University), Craig Bailey and Charles Hanna (U.S.
Naval Academy), Bruce Lundberg (University of Southern Colorado), Jiu
Ding (University of Southern Mississippi), Michael Evans (Washington and
Lee University), Karl David and Arnold Shilepsky (Wells College), and Mark
Janeba and Frank Zizza (Willamette University).

Finally we thank our colleagues in other departments at Mount Holyoke
and our spouses for their support and encouragement.

The mathematicians and statisticians at Mount Holyoke College

South Hadley, 1996

iv

Introduction

You undoubtedly have been told that the best way to learn mathematics is to
do mathematics. But what does it mean to do mathematics? To be most peo-
ple, doing mathematics is working out discrete problems in textbooks. But to
those who love mathematics, doing mathematics is the process of exploring
various mathematical phenomena. It is about investigation, discovery, mys-
tery and understanding. It is a process where finding an illuminating way to
think about something leads to more questions and more possibilities, where
elementary notions turn out to be unexpectedly subtle, and where seemingly
intractable difficulties sometimes yield totally to a new idea. This book con-
sists of a series of laboratory projects, most of which use the computer as an
experimental tool. For each project, your tasks will be

• To work by hand and/or by computer to generate examples illuminating
questions asked—and to raise some questions of your own;

• To carry out suitable experiments to enable you to see patterns in the
data relating to the problem under investigation;

• To give clear descriptions of your experimental findings;

• To make conjectures based on your observations;

• To support your conjectures with arguments based on your emprical
evidence, on mathematical analysis, and—when possible—with math-
ematical proofs.

The topics range across many different areas of mathematics and statis-
tics. We have chosen them both to convey some of the breadth of the math-
ematical sciences and also to introduce you to a number of important ideas

v

vi

that you will encounter again in future courses. With a few exceptions de-
scribed below, the chapters (projects) can be covered in any order. You can
have a valuable learning experience working through one or two or half a
dozen or more.

The goal is for you to have the fun of discovering some mathematics on
your own. While you will learn some specific ideas and techniques, these
are secondary to the broader experience of mathematical inquiry. Of course,
what distinquishes mathematics from other scientific disciplines is the pos-
sibility that empirical findings can be rigorously proved beyond a shadow of
a doubt. You won’t always know enough mathematics to construct such a
proof, but you can create a good foundation for learning to construct proofs
in more advanced courses by formulating your empirical arguments rigorously
and clearly.

Each chapter introduces a topic and places it in some context in the field.
There may be some exercises to give you practice with new ideas. It then
raises a number of more substantial questions for you to investigate, with
some suggestions for how to get started. The chapter concludes with a dis-
cussion of some of the underlying mathematical ideas, to help you understand
and interpret your results and to give you ideas for how to support some of
your conjectures with analysis or, in some cases, proof.

You will find it useful to keep a laboratory notebook of all your experi-
ments, jotting things down as you do them and recording your observations
and guesses. Your notebooks can be the basis for discussion with fellow
students as well as for writing a report summarizing the results of your in-
vestigation.

Writing a report is an invaluable opportunity to clarify and refine your
thinking. Your instructor may specify which questions your report should
address, or you may choose a cluster of related questions which interest you.
We suggest that you write your report so that it makes sense to a reader who
has taken a semester of college level mathematics but has not worked with
this material. (If you have a friend who fits this description and is willing to
read and comment on your drafts, you have a treasure!) You should write
in full sentences and paragraphs—no cryptic strings of formulas. Try to be
both clear and interesting. Look at a math text you’ve particularly liked or
an article you enjoyed reading to get an idea of the tone and style to aim for.

vii

Your introduction should describe the topic under investigation in a way
that engages the reader’s interest. You may need to provide some background
or context for your investigation. Define with care the terminology that you
will use, since precise descriptions of the phenomena you observe are essential.
(Sometimes it is easiest to write the introduction last!) The body of your
report naturally falls into four sections.

1. Your experimental strategy or design.

You should motivate the questions you ask—and the order in which
you ask them—and explain the logic of your choice of examples. Here
are some specific suggestions to get you started.

(a) Describe your first example.

• What was it?

• Describe it geometrically and/or algebraically.

• Why did you choose it?

• What happened when you carried it out?

(b) What did you try next? Why? What were your results?

(c) What eventually evolved as your general strategy for choosing
examples? Why?

2. Results of your experimentation.

You should organize your data carefully and give thought to how you
display your results; make effective use of tables, graphs, and pictures.

(a) Describe how your various examples worked out, being as clear as
you can, but omitting details that don’t seem important.

(b) Attach tables or graphs or sketches to your description, where
appropriate. Give each a clear, informative title.

However, don’t include anything you don’t refer

to in your discussion section.

3. Analysis of data.

Organize the discussion of your data carefully, and refer to your results
by citing the titles and numbers you assign. (E.g., a report on chapter
6 might refer to: “Table 3, Mersenne primes.”) Explain how your data
support your conjectures.

viii

(a) What patterns do you observe in your data?

(b) Formulate your conjectures. Which patterns do you guess rep-
resent real phenomena, rather than accidental regularities of the
examples you happened to choose?

(c) Justify your conjectures. Your choice of examples should test your
conjectures stringently—try to rule out “chance” regularities.

4. Mathematical analysis of conjectures.

Back up your empirical argument with an analytical and/or theoretical
one when you can.

You will need access to a computer, of course. Most chapters require
one or more simple computer programs. Programs are described in the text
in pseudocode, an outline of the program that makes its logic clear without
burdening the reader with the details of the syntax of any particular pro-
gramming language. Working code for each program is provided at the end
of the chapter in two languages, True BASIC and Mathcad . Three of the
chapters (7, 12 and 14) use more complicated programs, available electroni-
cally and on disk. Details are in the instructor’s manual accompanying this
text. We do not assume prior knowledge of programming, and learning to
program is not one of the goals of this text. However, by trying to read
the programs and understand what they do, you will learn something about
what computers can do and how to make them do it.

Most of the chapters are completely independent of each other and of
specific prior courses, but there are some exceptions. Chapters 2, 3 and
4, Iteration of Quadratic Functions, Iteration of Linear Maps in the Plane,
and Iteration to Solve Equations, are independent of each other, but they
each presuppose that you have worked through chapter 1, Iteration of Linear
Functions. Chapter 9, the Euclidean Algorithm for the Complex Integers,
assumes you have done chapter 8 on the Euclidean Algorithm. Most of this
text doesn’t require calculus. The derivative appears briefly, but avoidably, in
portions of chapters 2 and 3. Chapter 15, Numerical Integration and Integra-
tion by Chance, and a portion of chapter 12, Sequences and Series, assume
a calculus course that includes the definite integral and the Fundamental
Theorem.

We hope you enjoy exploring these projects and that they whet your
appetite for further study.

Contents

1 Iteration of Linear Functions 1

1.1 Introduction . 1

1.2 What is iteration? . 2

1.3 The mathematical ideas . 3

1.4 Questions to explore . 7

1.5 Discussion . 11

1.6 References . 13

1.7 Computer programs . 13

2 Cyclic Difference Sets 15

2.1 Introduction . 15

2.2 Arithmetic modulo 15 . 16

2.3 Cyclic difference sets modulo m 18

2.4 Questions to explore . 20

2.5 Discussion . 23

2.6 Computer Programs . 24

1

2 CONTENTS

3 The Euclidean Algorithm 29

3.1 Introduction . 29

3.2 The algorithm . 30

3.3 Questions and discussion . 34

3.4 Linear Diophantine Equations 39

3.5 Additional topic . 45

3.6 Computer Programs . 45

4 Prime Numbers 51

4.1 Introduction . 51

4.2 Listing prime numbers . 52

4.3 Functions generating primes 56

4.4 Distribution of primes . 61

4.5 Further reading . 63

4.6 Computer Programs . 64

4.6.1 TrueBASIC programs 64

5 The Coloring of Graphs 69

5.1 Introduction . 69

5.1.1 A scheduling problem 70

5.2 Introduction to the mathematical ideas 71

5.2.1 Translation to an equivalent problem 71

5.2.2 The general counting problem 73

5.2.3 An algorithm for counting colorings 74

5.3 Questions to explore . 80

CONTENTS 3

6 Randomized Response Surveys 85

6.1 Introduction . 85

6.2 Asking sensitive questions . 86

6.3 Background . 87

6.4 Questions to explore . 88

6.4.1 Finding estimates . 90

6.4.2 Basic properties of the estimate 91

6.4.3 Changing the chances 96

6.4.4 Other properties of estimates 98

6.5 Programs . 102

7 Polyhedra 111

7.1 Introduction . 111

7.2 Questions and discussion . 112

7.3 Additional topic . 114

8 The p-adic Numbers 115

8.1 Introduction . 115

8.2 Absolute values on Q . 117

8.3 The Real numbers . 120

8.4 The p-adic numbers . 122

8.5 References . 133

9 Parametric Curve Representation 135

9.1 Introduction . 135

9.2 Symmetries and closed curves 136

9.2.1 Definitions . 136

4 CONTENTS

9.2.2 Graphing with the computer 138

9.2.3 Symmetry in curves . 140

9.3 Questions to explore . 142

9.4 Polar representation of curves 145

9.4.1 Parameterized families of polar curves 147

9.5 Additional ideas to explore . 147

9.6 Computer Programs . 148

9.6.1 True BASIC program 148

9.6.2 Mathcad programs . 151

10 Numerical Integration 153

10.1 Introduction . 153

10.2 Standard numerical methods 154

10.3 Automating the standard methods 158

10.4 Questions to explore . 160

10.5 Monte Carlo methods . 163

10.6 Higher dimensions . 166

10.7 Computer programs . 169

10.7.1 True BASIC programs 169

10.7.2 Mathcad programs . 174

11 Sequences and Series 175

11.1 Introduction . 175

11.2 The mathematical ideas . 176

11.3 The harmonic series . 179

11.4 The logarithmic integral . 186

CONTENTS 5

11.5 Euler’s constant . 191

11.6 Additional exercises and questions 193

11.7 Computer programs . 195

11.7.1 True BASIC Program 195

11.7.2 Mathcad program . 197

12 Experiments in Periodicity 199

12.1 Introduction . 199

12.2 Area accumulation using calcwin 202

12.2.1 Approximating the area accumulation function 202

12.2.2 Plotting an antiderivative 206

12.3 A new type of function . 209

12.4 Antiderivatives of periodic functions 210

12.5 Finding the periodic antiderivative 212

12.6 Further investigation . 214

13 Iteration to Solve Equations 217

13.1 Introduction. 217

13.2 Improving Convergence. 220

13.3 Questions to explore . 221

13.4 Computer programs . 222

13.4.1 TrueBASIC program 222

13.4.2 Mathcad program . 223

6 CONTENTS

14 Iteration of Quadratic Functions 225

14.1 Introduction . 225

14.2 Some theory . 225

14.3 Iterating f(x) = ax(1− x) . 226

14.4 The Feigenbaum Diagram . 229

14.5 Examining chaos . 230

14.5.1 Sensitive dependence on initial conditions 230

14.5.2 Chaos is not random: histograms 231

14.5.3 Chaos is not random: repelling periodic points 233

14.6 The tent and sawtooth functions 233

14.7 Conjugacy . 234

14.8 Iterating other functions . 235

14.9 Listening to chaos . 235

14.10Computer Programs . 237

14.10.1 True BASIC programs 237

15 Iterated Linear Maps in the Plane 245

15.1 Introduction . 245

15.2 Multiplying matrices . 246

15.3 An Example to Start . 249

15.4 Questions to explore . 255

15.5 Discussion . 255

15.6 Computer Programs . 257

15.6.1 True BASIC programs 257

15.6.2 Mathcad program . 259

15.6.3 Matlab program . 260

CONTENTS 7

16 Euclidean Algorithm for Complex Integers 261

16.1 Introduction . 261

16.2 Complex Integers . 262

16.3 Questions and discussion . 270

16.4 Computer Programs . 273

16.4.1 True BASIC programs 273

Chapter 1

Iteration of Linear Functions

1.1 Introduction

This chapter introduces iteration of linear functions, an interesting topic in its
own right, and a prelude to other labs in which iteration is explored in greater
depth. The computer provides an especially appropriate tool for the study
of iteration since it is so adroit at doing repetitive operations. Sequences of
numbers arise from the iteration process. In some cases, the sequences will
converge, while in others they will diverge in a variety of ways.

In this chapter you will

• Learn what iteration and iteration sequences are;

• See examples of iteration sequences that converge and diverge;

• Look for examples of linear functions producing convergent and diver-
gent iteration sequences; and

• Determine general conditions on linear functions predicting whether
their iteration sequences converge or diverge.

1

2 CHAPTER 1. ITERATION OF LINEAR FUNCTIONS

1.2 What is iteration?

Have you ever idly repeatedly pressed one of the buttons on your calculator?
Consider for example the

√
button. You could compute

√
2,
√√

2,
√√√

2,
√√√√

2, . . .

successively by entering the number 2 and pressing the
√

button repeatedly.
This is an example of iteration, that is, repeated application of the same
function given some initial value. Numbers obtained in this way are called
iterates of the starting value.

If you carry out the process above you will be rewarded with a sequence
of numbers

1.414 . . . , 1.189 . . . , 1.090 . . . , 1.044 . . . , 1.021 . . . , 1.010 . . . , . . .

which are getting nearer and nearer to 1. We say that the sequence is con-
verging to 1. Indeed, you will find the same behavior if you start with any
other positive number. For example, beginning instead with 5, you obtain
the sequence

2.236 . . . , 1.495 . . . , 1.222 . . . , 1.105 . . . , 1.051 . . . , 1.025 . . . , . . .

approaching 1 from above, and beginning with 0.2, you will get

0.447 . . . , 0.669 . . . , 0.818 . . . , 0.904 . . . , 0.951 . . . , 0.975 . . . , . . .

which approaches 1 from below.

Even a moderately complicated function f(x) can give rise to a highly
complicated sequence of iterates

x0, x1 = f(x0), x2 = f(x1), x3 = f(x2), . . .

Indeed iteration is very much a field of active current research.

Iteration is also of some practical importance. Your education to date has
been rather misleading. You may think that most equations can be solved
exactly . Nothing could be further from the truth!

Most equations can only be solved approximately, and, as we may show
in a later investigation, iteration is a useful method for obtaining ever more
accurate approximate solutions.

1.3. THE MATHEMATICAL IDEAS 3

1.3 The mathematical ideas

In this lab, we will ask the computer to do most of the boring work (the
computations) and leave the interesting analysis for us to do. We shall use a
program, iterlin, that computes n iterates of a function f(x) = ax + b for
given values of a and b, and for a given starting point x = x0. The algorithm
can be described by the following program outline or, as it’s sometimes called,
pseudocode. Using pseudocode allows us to show the logic of an algorithm
without requiring knowledge of the details of any specific computer language.
(Actually, our program outlines are somewhat more detailed than standard
pseudocode, since they’re designed for novice readers of programs. We want
you—armed with a manual for your programming language—to be able to
create a working program from the pseudocode.) In this first example of
pseudocode, the lines are numbered so that, one by one, we can comment on
them.

Program outline: Iterlin

1 Input: coefficients a and b of a linear function y = ax + b,

an initial value x0, and the number n of iterations

2 Output: the n iterates of the function, starting with x0

3 x := x0

4 PRINT x

5 FOR I = 1 TO n

6 y := ax + b

7 PRINT I and y

8 x := y ! Replaces x by f(x) = ax + b

9 NEXT I

1. Most programs require the user to provide some information (input).
Because the input is specified here, we don’t repeat input statements
in the program outline that follows (lines 3 to 9).

2. The only way the user knows the result of the computer’s calculations
is if the values of interest are printed or graphically displayed. Because
the form of the output can vary, we do repeat output statements in the
body of the pseudocode (see lines 4 and 7).

4 CHAPTER 1. ITERATION OF LINEAR FUNCTIONS

3. The symbol “:=” denotes assignment . The expression “C := D”
means that the variable C is given the value D:

(new value of C) = (current value of D).

We write “x := x0” to indicate that the value assigned to x is the
input value x0. Note that there is no way to type subscripts in computer
languages, so we type “x0.”

For another example (see the explanation of line 9), to indicate that
the value of the variable I is to be increased by one from its current
value, we write “I := I + 1,”

(new value of I) = (old value of I) + 1.

With the usual meaning of equality, the equation I = I + 1 doesn’t
make sense, since there is no value of I that makes the equation true.
Computer languages (i.e., real code, not pseudocode) differ in how they
represent assigment. Mathcad uses “C := D” and True BASIC uses
“LET C = D,” to name two examples. So don’t necessarily expect
to see “:=” in a working program. We have used the distinctive
“:=” to draw your attention to the fact that this isn’t the equality
you’re used to. (Some authors use “C ← D” to denote assignment
in pseudocode.)

Regular equality is used in computer programs as well. Line 5 shows
one instance. Equality is used in logical statements: statements which
the computer must test for truth or falsehood. For example, if you only
wanted to see values of x which make y = ax + b equal to zero, you
would write “IF y = 0 THEN PRINT x.”

4. This line prints the input value x0. (The rest of the program will print
x1, x2, . . . , xn; see line 7.)

5. The heart of this algorithm is what’s called a FOR-NEXT loop. It is
traditional to indent the body of the loop (lines 6–8) to make it easy
to identify. This loop begins with I = 1. The first line of the body of
this loop doesn’t explicitly involve I, although in other cases it might.
You should think of I as a counter keeping track of how many times
the computer has gone through the loop. With I = 1, it’s making its
first pass through the loop.

1.3. THE MATHEMATICAL IDEAS 5

6. We write “y := ax + b” to indicate that the value assigned to y is the
result of the calculation ax+ b. Note that the first time this arithmetic
is done (the passage through the loop with I = 1), it is done with with
the values of a, b, and x that were input.

7. The first time through the loop, the two numbers printed will be 1
(the first value of I) and the value of x1 = f(x0).

8. To specify that the new value of the input variable x is the current
value of y = f(x), we write “x := y”

(new value of x) = (current value of y).

That is, x1 = f(x0) replaces x0 as the value of x.

Sometimes our pseudocode includes remarks preceded by the symbol
“!”. These comments , as they are called, are to be read by the human
user; they are invisible to the computer. Most computer languages
have a special symbol like “!” that can be used to add comments for
the reader in this way. Comments are essential in complex programs.
In this case the comment calls attention to the fact that the value of
x is updated from xi−1 to xi = f(xi−1. On the first pass through the
loop (I = 1), x is updated from x0 to x1.

9. The “NEXT” statement, in conjunction with line 5, means: check to
see if I > n, and if so, stop; if not, increase I by 1 (in computerese,
set I := I + 1) and repeat the loop. Notice that on the second
pass through the loop, I = 2 and the starting value of x is x1. The
print statement in line 7 will produce 2 (the second value of I) and
the value of x2 = f(x1). At the end of the second time through the
loop, the value of x will be changed from x1 to x2, and this will be the
starting value of x on the third pass through the loop, and so forth.

Read through the pseudocode and be sure you understand every line. (A
good check of your understanding is to choose some values of a, b, x0 and a
small n and follow the computer instructions yourself.) Working programs in
True BASIC and Mathcad derived from this outline appear at the end of this
chapter. They perform the desired iterations. You may use the programs we
give or write your own in whatever language you wish.

6 CHAPTER 1. ITERATION OF LINEAR FUNCTIONS

Practice running your version of iterlin with various values of a, b, x0,
and n. For instance, let f(x) = −2x + 1 with the initial x = 1.5 using
10 iterations. We will use the notation (a, b, x, n) = (−2, 1, 1.5, 10) for this
experiment. Also try (a, b, x, n) = (0.5, 2, 5, 10). These two examples lead to
rather different outcomes. Describe them as carefully as you can. Try also
the examples (a, b, x, n) = (−3, 1, 1, 15) and (a, b, x, n) = (−3, 1, 0.25, 15).
What do you notice about these last two experiments, which both use the
same linear function? Describe these outcomes carefully too. How are they
similar to the results of the first two? How are they different?

The graphs of functions of the form f(x) = ax + b, where a and b are
particular constants, are straight lines in the plane (and hence f is called
a linear function). In this project we will explore the behavior of linear
functions under iteration. So, given a linear function f(x) = ax + b and
some initial choice for x, say x0, we produce a sequence of numbers x1, x2, ...
defined by

x1 = ax0 + b

x2 = ax1 + b

x3 = ax2 + b

...

xn+1 = axn + b

...

We shall be especially interested in how this sequence behaves as n gets
larger and larger. Clearly the behavior of the sequence {xn} depends on the
linear function under consideration (that is, the choice of a and b) as well as
the choice of initial starting point x0. We wish to investigate how the various
choices influence the eventual behavior of the sequence. The computer is an
ideal tool to use to explore such questions.

In order to keep track of patterns, we need some language to describe the
behavior we see. Mathematicians distinguish between convergent sequences—
like those suggested by the experiments (a, b, x, n) = (0.5, 2, 5, 10) and (a, b, x, n) =
(−3, 1, 0.25, 15)—and divergent sequences—like those suggested by the ex-
periments (−2, 1, 1.5, 10) and (−3, 1, 1, 15). Convergent sequences converge
to a particular value, called the limit of the sequence. The experiment

1.4. QUESTIONS TO EXPLORE 7

(a, b, x, n) = (0.5, 2, 5, 10) sugggests the limit is 4; and the experiment (a, b, x, n) =
(−3, 1, 0.25, 15) suggests the limit is 0.25.

Exercise: Write down careful definitions of the three terms convergent se-
quence, divergent sequence, and limit of a convergent sequence.

1.4 Questions to explore

For each of the questions below, use the computer program to find your own
examples of linear functions, different from those you do in class, which have
the specified behavior and help to shed light on the posed question:

Question 1: Can you find a linear function that gives a convergent iteration
sequence of values for every initial value? That is, can you find values of a
and b that assure convergence regardless of the chosen x0?

Question 2: Can you find a linear function which, on iteration, appears to
give a divergent sequence for every initial value?

Question 3: Can you find an example of a linear function whose iteration
sequence converges to different limits for different starting values?

Question 4: Can you find a linear function that will give a convergent
iteration sequence for one or more initial values and a divergent sequence for
other initial values?

Caution: The computer can fool you! Here is an example. Use the computer
to try the experiment (a, b, x, n) = (−4, 1, 0.2, 25). What do you get? Now,
working by hand, try the more modest experiment (a, b, x, n) = (−4, 1, 0.2, 2).
What do you get? What’s going on here? The problem is that while x0 = 0.2
is an exact decimal, computers don’t represent numbers decimally. They use
binary representations—that is, they express numbers in terms of powers of
2, not powers of 10. The binary representation of 0.2 is not exact, and as the
computer repeats its calculations for more and more iterations, the round-
off error accumulates and becomes more and more noticeable. (This can be
a particular problem as you tackle question 4.) Sometimes you can avoid
these round-off error problems by choosing values of x0 which are (positive

8 CHAPTER 1. ITERATION OF LINEAR FUNCTIONS

or negative) powers of 2, like 0.5, 0.25, 0.125, etc. Later, as we look at the
actual proofs, we will not have these problems. The moral here: computers
sometimes compute badly! Don’t put all your stock in them! On the other
hand, there is much to be gained by looking at what the computer does tell
us, and a wary eye will generally catch the bad output.

Consider also the following questions:

Question 5: What conditions on a and/or b assure that the iteration se-
quence of f(x) = ax + b converges no matter what the choice of x0? Guess
at this from your examples (and from doing a few more examples with the
computer). We’ll explore this in detail in what follows.

Question 6: You can think of the set of all linear functions as points in the
plane under the correspondence

f(x) = ax+ b←→ (a, b) point in R2

For example, consider Figure 1.1. With this way of exploring linear functions
under iteration we can think of the (a, b) plane as being cut up into three
kinds of pieces:

• Type (i) points: those points that give rise to convergent sequences
under iteration regardless of the value of x0,

• Type (ii) points: those points corresponding to convergent sequences
for some choices of x0 and divergent sequences for other choices, and

• Type (iii) points: points for which there is never convergence.

On a piece of graph paper, draw an (a, b)-plane and, based on many
examples using your computer program, indicate clearly which points you
feel are of Types (i), (ii) and (iii). For instance, the example f(x) = −3x+ 1
we looked at earlier gave a divergent sequence for most x0’s but converged
for one value. Hence this example makes (−3, 1) a Type (ii) point. Similarly,
looking at the function f(x) = 0.5x + 2, we are convinced that (0.5, 2) is a
Type (i) point.

1.4. QUESTIONS TO EXPLORE 9

f(x) = 0.5x + 2

(0.5,2)

y

x

f(x) = -3x + 1

(-3,1)

Fig. 1.1: Linear functions corresponding to points

Question 7: For a function f(x) = ax + b always producing a convergent
sequence, what is the relationship between the limiting value L and the
constants a and b? To explore this question, fix a value for a for which
you always get convergence. For example, you can try a = 0.2 (though you
should check this out on the computer for a few values to be sure it is an
appropriate value). Now vary b (holding a fixed), noting the limiting values
corresponding to each b. On a (b, L) coordinate system, plot the limiting
values L against b (all for that fixed a). We show a few points calculated in
this way in Figure 1.2.

What do you notice? Try this for several fixed a’s.

Question 8: If f(x) = ax + b does converge for a starting value of x0, to
what limit value L does it converge? What do you suppose determines the
limit L; is it a or b or x0, or a combination of two or all three of these? Make
a guess about this on the basis of your experimental evidence. We’ll look
more at this in the discussion that follows.

10 CHAPTER 1. ITERATION OF LINEAR FUNCTIONS

b

L

Fig. 1.2: Showing a few values of L against b, for a = 0.2

Question 9: This question, again, calls for some speculation and some
pictures. If a linear function fails to give a convergent sequence on iteration,
how does it fail? Is there more than one way it could fail to converge? If so,
how many ways are there? What does this last question mean? Can you get
some experimental data and draw some pictures to show this behavior?

Visualizing iteration. Here is a geometric construction, called a “cobweb”
picture, which allows us to visualize the process of iteration. On a piece of
graph paper with an (x, y) coordinate system, draw the graph of the line
y = ax+ b for some choice of a and b. On the same system, draw the graph
of y = x. Choose a value of x0 and mark it on the x-axis. Draw a vertical
line to the point (x0, y0) on the line y = ax+ b. Now, draw a horizontal line
from (x0, y0) to the line y = x; from the intersection of the horizontal line
with y = x draw a vertical to the x-axis. This locates x1 on the x-axis—why
is this true? Repeat the procedure starting with x1: vertically to (x1, y1) on
the line y = ax+ b, horizontally to the intersection with the line y = x, and
vertically again to the x-axis at x2, etc. Try some constructions of this same
type for linear functions that you know will yield divergent sequences. Try
other examples to see what sorts of divergence you can describe.

1.5. DISCUSSION 11

Question 10: For linear functions which do give convergent sequences on
iteration, what can you say about how rapidly the sequence converges? Begin
by deciding what might be a reasonable way to measure speed of convergence.
Then, which of the parameters a, b, or x0 seems to affect the speed?

1.5 Discussion

This section gives you some hints for your write-up of the laboratory and for
your analysis of the convergence of the iteration sequences. We have been
exploring the sequence {xn} given by

xn = axn−1 + b, n = 1, 2, . . .

where the starting value x0 is given. The sequence begins:

x0
x1 = ax0 + b
x2 = a(ax0 + b) + b = a2x0 + ab+ b = a2x0 + b(1 + a)

• Write down two additional terms, expanding them algebraically as we
have just done (as a multiple of x0 plus a multiple of b).

• Write your guess for a general term xn in the same way that you have
just done for x1 through x4.

• Assume, for the time being, that a 6= 1. Recalling that

an−1 + an−2 + · · ·+ a+ 1 =
1− an

1− a

observe that this general term can be written in the form

xn = anx0 +
b(1− an)

1− a

Now verify, by doing the algebra, that this expression can be rewritten
as

xn = an(x0 −
b

1− a
) +

b

1− a

12 CHAPTER 1. ITERATION OF LINEAR FUNCTIONS

• Mathematical induction is a method used to give a formal proof of a
statement of the form

Condition P (n) holds for every positive integer n.

If you have studied mathematical induction before or if it is covered in
your class, use it to prove that

xn = an(x0 −
b

1− a
) +

b

1− a

is correct for all positive integers n.

• What can you say about limn→∞ a
n? In other words, for a particular a,

what happens to the value of an as n grows larger and larger? How does
the value of a affect this limiting behavior? Look at some examples,
and try to support your conclusions with a mathematical argument.

• Look carefully at your final expression for xn. This and your answers to
some of the previous questions should suggest two possible conditions
that will guarantee convergence. One of the conditions is a property
of the function itself (and has nothing to do with x0). We will call
this Condition I. The other is a property of both the function and the
starting point x0. This will be Condition II. State these conditions,
and try to prove that the iteration sequence converges if either of these
conditions holds. What is L = limn→∞ xn under either of these condi-
tions?

• Now return to the (a, b) plane that you considered earlier. With your
new (more exact) information, draw a graph in which you shade again
values of a and b that yield convergent sequences according to Condition
I. Next draw yet another (a, b) plane and shift attention to Condition
II. Suppose x0 is fixed at 1. Sketch the set of all points (a, b) that give
convergence for this value, and label this set. Do the same for x0 = 2
(on the same graph), for x0 = 1/2, x0 = −1, and a few other values
(labeling all the sets). What figures do you get for each x0?

• If a = 1, what condition ensures convergence?

1.6. REFERENCES 13

• Finally, are there any values of (a, b) which never yield convergence?
That is, are there any points that are not included in either of the pre-
vious two graphs you drew? If so, prove, by looking at the construction
of the sequence xn, that convergence fails at these points.

1.6 References

Of these three references, the last is more mathematical, the first two are
more popular.

• James Gleick, Chaos, Viking Press, 1987, (see the chapter on “Life’s
ups and downs”.)

• Ian Stewart, Does God Play Dice?, Blackwell Press, 1989 (see chapter
8 of this reference).

• Robert Devaney, A First Course in Chaotic Dynamical Systems, Addison-
Wesley, 1992.

1.7 Computer programs

Here is a program in True BASIC that performs the iteration of a linear
function — where we are given the coefficients of the function and the starting
value. The program displays the iteration sequence.

Program: Iterlin

CLEAR !Clears the screen

!Iterate the function f(x) = ax + b n times

INPUT PROMPT "What is a? ": a

INPUT PROMPT "What is b? ": b

INPUT PROMPT "What is the initial value of x? ": x

INPUT PROMPT "How many iterations? ": n

PRINT "The initial value chosen was x = "; x

FOR I = 1 to n

14 CHAPTER 1. ITERATION OF LINEAR FUNCTIONS

LET y = a * x + b

Print i, y

LET x = y

NEXT i

END

If you would like your printed output to look nicer, you can substitute

PRINT using "i = ### y = ##.##########": i,y

for the print statement in the loop.

While we have not done it for this lab, by altering the program line that
calculates y = ax + b, you could use a modified form of your program to
compute iterates of any reasonable function. (With functions that do not
involve parameters a and b, you can simply ignore the requests for a, and
b—giving them any values you wish— or you can delete the corresponding
lines of the program.)

Chapter 2

Cyclic Difference Sets

2.1 Introduction

The ideas in this chapter belong to algebra and number theory (and they lead
to some interesting geometry). Difference sets have been studied since the
1950’s, but recently interest in them has increased because they are associated
with “error correcting codes.” Error correcting codes aren’t intended to keep
secrets but rather to enable the receiver of a message to detect and correct
transmission errors (the way we can recognize typos in written English and
often correct them). For example, information beamed back to earth from
Mariner 9 was encoded using mathematics related to difference sets. The
Scientific American article referred to below also makes use of difference
sets, but in this case to create images of distant astronomical objects.

In investigating difference sets, you will:

• Learn something called “modular arithmetic”;

• Look for patterns in numerical data;

• Count things in new ways; and

• Discover and perhaps even prove theorems.

15

16 CHAPTER 2. CYCLIC DIFFERENCE SETS

In the article “X-Ray Imaging with Coded Masks” (August, 1988, Sci-
entific American), the author Gerald K. Skinner uses a “cyclic difference set
modulo 15” to create the masks he needs for his X-ray telescope. In this
project, you will investigate cyclic difference sets in the cyclic groups that
you get when you do arithmetic modulo a positive integer m. Difference sets,
in general, might be in other groups.

2.2 Arithmetic modulo 15

To start, let’s consider arithmetic “modulo 5,” which means we do arithmetic
with the integers which are the possible non-negative proper remainders upon
division by 5, namely

{0, 1, 2, 3, 4} .

We want to define rules for adding and multiplying these five numbers so
that the result is always another of these five numbers. Sometimes we can
add or multiply as usual and get answers of the desired kind:

0 + 3 = 3 2 + 1 = 3 2× 2 = 4

But sometimes, the normal result is too large—say 3 + 4 = 7 or 2×3 = 6. In
these cases we replace the sum or product by its positive proper remainder
upon division by 5. For example, 7 = 1× 5 + 2, so when we divide 7 by 5 we
get remainder 2. Therefore, we say

3 + 4 = 2 modulo 5.

Similarly, 6 = 1× 5 + 1, so we say

2× 3 = 1 modulo 5.

Proceeding in this way, we can write out complete addition and multiplication
tables modulo 5.

2.2. ARITHMETIC MODULO 15 17

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

× 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Addition modulo 5 Multiplication modulo 5

Be sure you see how all the entries in the tables are obtained. Notice partic-
ularly that

2 + 3 = 0 modulo 5 ,

for example, since 5 divided by 5 leaves remainder zero.

Now we do arithmetic modulo 15, which means we do arithmetic with the
integers which are the possible non-negative proper remainders upon division
by 15, namely

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}.

As for arithmetic modulo 5, at first we add and multiply these numbers as
usual, but if the result is larger than any number on our list of 15 numbers,
then we replace it by its positive proper remainder upon division by 15. For
example, modulo 15 we have 3 + 6 = 9, 7 + 11 = 3 (since 18/15 leaves
remainder 3), 7 × 2 = 14, 5 × 3 = 0 (since 15/15 leaves remainder 0), and
5× 11 = 10 (since 55/15 leaves remainder 10).

Exercise 1: Write out complete addition and multiplication tables modulo
15. (This could be pretty tedious, so you may want to divide up the task
among several people—perhaps each person might do 3–5 rows of each table.)

We also need to do subtraction modulo 15, so we need to give meaning
to negative numbers. For example, in ordinary arithmetic −3 means the
“additive inverse of 3,” namely, the number we add to 3 in order to obtain
0. If we add modulo 15, the number we add to 3 in order to obtain 0 is 12;
that is, 3 + 12 = 0 (since 15/15 leaves remainder 0), so

−3 = 12 modulo 15 .

18 CHAPTER 2. CYCLIC DIFFERENCE SETS

Exercise 2: Find the additive inverse of each of 0, 1, 2, . . . , 14 modulo 15.

We can give meaning to x− y modulo 15 by

x− y = x+ (−y) modulo 15.

Now we can verify that the set D = {1, 2, 3, 5, 6, 9, 11} of the Scientific Amer-
ican article is a cyclic difference set modulo 15: for each of the 14 possible
non-zero values of a in {0, 1, 2, . . . , 14}, there are the same number of pairs
of elements in D whose difference is a (3 pairs in this case):

a = 1 a = 2 a = 3 a = 4 a = 5 a = 6 a = 7
2− 1 = 1 3− 1 = 2 5− 2 = 3 5− 1 = 4 6− 1 = 5 9− 3 = 6 9− 2 = 7
3− 2 = 1 5− 3 = 2 6− 3 = 3 6− 2 = 4 11− 6 = 5 11− 5 = 6 3− 11 = 7
6− 5 = 1 11− 9 = 2 9− 6 = 3 9− 5 = 4 1− 11 = 5 2− 11 = 6 1− 9 = 7

a = 14 a = 13 a = 12 a = 11 a = 10 a = 9 a = 8
2− 9 = 8

11− 3 = 8
9− 1 = 8

Exercise 3: Complete the table to check that there are exactly 3 pairs of
elements in D whose difference is a for a = 9, 10, 11, 12, 13, 14. Why do you
suppose the values of a listed in the partially completed check table above
are arranged the way they are?

2.3 Cyclic difference sets modulo m

Let’s choose a positive integer m, and we’ll write Z/mZ to represent the set
of non-negative proper remainders upon division by m,

Z/mZ = {0, 1, 2, . . . ,m− 1} .

We call Z/mZ the set of integers modulo m. We add and multiply the
elements of Z/mZ modulo m.

Exercise 4: Try some examples of addition and multiplication modulo 6.
Now try some modulo 7.

2.3. CYCLIC DIFFERENCE SETS MODULO M 19

Exercise 5: If x is in Z/mZ, explain why m − x is as well. Explain why
m− x is the additive inverse of x modulo m.

We write
a ≡ b (mod m)

to indicate that a and b leave the same remainder upon division by m, and
we say that a and b are congruent modulo m.

Exercise 6: If a ≡ b (mod m), what can you say about the difference a− b?
Conversely, for two integers a and b, what condition on a− b guarantees that
a ≡ b (mod m)?

Exercise 7: Explain why every integer is congruent modulo m to exactly
one element of Z/mZ.

Exercise 8: Explain why working modulo m assures that the sum or product
of two elements of Z/mZ is again in Z/mZ.

A subset D of Z/mZ is a cyclic difference set modulo m provided
that the set of all non-zero differences of elements of D represents each non-
zero element of Z/mZ the same number of times. (Notice that there are two
requirements here: every non-zero element of Z/mZ occurs as a difference of
elements of D, and each non-zero value appears as a difference exactly the
same number of times.) A cyclic difference set D has three parameters:

m = the modulus (and number of elements in Z/mZ)

k = the number of elements in D

λ = the number of pairs of elements of D giving

each non-zero difference modulo m

In the example above, m = 15, k = 7, and λ = 3.

Many methods are known for constructing cyclic difference sets modulo
m, but it is an unsolved problem to describe all cyclic difference sets. We are

20 CHAPTER 2. CYCLIC DIFFERENCE SETS

going to use the computer to explore one method in detail. (The one used
to construct the example in the Scientific American article is quite different.
It uses some interesting ideas from geometry.)

It’s easiest to describe the method we will explore by using it in a specific
case. We will do our example with m = 7, and we will find that k = 3
and λ = 1. Since m = 7, we are working with the integers modulo 7:
Z/7Z = {0, 1, 2, 3, 4, 5, 6}. The method requires that we square each of the
non-zero elements of Z/7Z: 1 × 1 = 1, 2 × 2 = 4, 3 × 3 = 2, 4 × 4 = 2,
5× 5 = 4, 6× 6 = 1.

Exercise 9: Why does 1× 1 = 6× 6? Why does 2× 2 = 5× 5? Why does
3× 3 = 4× 4?

We take for the set D the distinct non-zero squares of elements of Z/7Z:

D = {1, 2, 4}.

Clearly k = 3, but is this D really a cyclic difference set with exactly 1 pair
of elements in D whose difference is a for a = 1, 2, 3, 4, 5, 6?

Exercise 10: Check that this D is a cyclic difference set modulo 7 with
λ = 1.

Unfortunately, this method does not work for every choice of modulus m.

Exercise 11: (a) Carry out this procedure with m = 5 and check whether
the resulting set of distinct non-zero squares of elements of Z/5Z is or is not
a cyclic difference set. (b) Now try m = 6.
(c) What about m = 15?

2.4 Questions to explore

Now we come to the main questions for this investigation. Choose a modulus
m and form the setD of the non-zero squares modulom. Whenm is relatively

2.4. QUESTIONS TO EXPLORE 21

small, this is easy to do by hand. For larger values of m it is helpful to use
a computer. Here is the logical structure of a computer program called
squares that creates the set of distinct non-zero squares modulo m for
1 < m ≤ 1000.

Program outline: Squares

Input: the modulus m (1 < m <= 1000)

Output: the distinct non-zero squares modulo m

Create an array sqlst(i), 1 <= i <= m-1 that can handle m <= 1000

! sqlst(v) counts # times v occurs as a square mod m

Counters initialized to zero

FOR i = 1 TO m - 1

value := (i * i) MOD m

sqlst(value) := sqlst(value) + 1

NEXT i

FOR v = 1 TO m - 1

IF sqlst(v) > 0 THEN PRINT v

NEXT v

Be sure you can explain why this program does what it should.

Question 1: For which values of m is the number k of distinct elements in
D equal to (m− 1)/2? (Can m be even in this case?)

NOTE: For the next two questions we will work only with values of m for
which D has exactly (m− 1)/2 elements.

Now we will investigate in which of these cases D is actually a difference
set. Since calculating all possible differences of elements of D by hand is very
tedious, we need a computer program. Here is pseudocode for the program
differences.

Program outline: Differences

22 CHAPTER 2. CYCLIC DIFFERENCE SETS

Input: the modulus m

Output: the distinct non-zero squares and their non-zero

differences, including the number of repetitions

Create three arrays sqlst(i), difflst(i), sq(i), 1 <= i <= m-1,

for 1 < m <= 1000

! sqlst(v) counts # times v occurs as a square mod m

! difflst(v) counts # times v occurs as a difference

! of squares mod m

! sq(i) is the ith distinct non-zero square

Counters initialized to zero

FOR i = 1 TO m - 1

value := i * i MOD m

sqlst(value) := sqlst(value) + 1

NEXT i

! Listing and counting distinct non-zero squares mod m

numsq := 0 !numsq counts distinct non-zero squares;

!initialize the count

FOR v = 1 TO m - 1

IF sqlst(v) > 0 THEN

PRINT v

numsq := numsq + 1

sq(numsq) := v ! sq(n)=v makes v the nth square

sqlst(v) := 0 ! Assures v not listed or counted again

END IF

NEXT v

PRINT numsq ! Total number of distinct non-zero squares

! Creating and counting all possible differences

FOR i = 1 TO numsq

FOR j = 1 TO numsq

value := (sq(i) - sq(j)) MOD m

difflst(value) := difflst(value) + 1

NEXT j

NEXT i

! Listing distinct differences and counting repetitions

2.5. DISCUSSION 23

numdiff = 0 ! numdiff counts distinct non-zero diffs;

! initialize the count

FOR v = 1 TO m - 1

IF difflst(v) > 0 THEN

numdiff := numdiff + 1

PRINT v, difflst(v)

END IF

NEXT v

PRINT numdiff ! Number of distinct non-zero differences

Be sure you can explain why this program does what it should.

Question 2: Find at least 10 values of m for which D is a cyclic difference
set. Can you characterize these “good” values of m?

Question 3: For “good” values of m (in the sense of question 2), let k be the
number of elements in D, and let λ be the number of pairs of elements in D
giving each non-zero difference modulo m. Can you express the parameters
k and λ as functions of m?

2.5 Discussion

The goal of this section is to provide analytic support for at least some of
your empirical observations. The next five questions are meant to help you
prove that the pattern you see in question 1 always holds.

Question 4: Suppose x is in Z/mZ and y is the additive inverse of x. Can
you show that x2 ≡ y2 (mod m)?

Question 5: If x 6= 0 is in Z/mZ, can x equal its additive inverse modulo
m? Under what circumstances?

Question 6: What do the answers to questions 4 and 5 say about the
maximum number of distinct non-zero squares modulo m when m is odd?
when m is even?

24 CHAPTER 2. CYCLIC DIFFERENCE SETS

NOTE: For the remaining questions in this section, assume that m is odd.

Question 7: Suppose m is a perfect square, m = a2 for some integer a. Can
you show that in this case the number of distinct non-zero squares modulo
m must be less than (m− 1)/2 ?

Question 8: What can you say about the case when m = ab for 0 < b <
a < m? [Hint: compare (a+ b)2 and (a− b)2 modulo m. Can a+ b and a− b
be congruent modulo m? Can they be additive inverses modulo m?]

Question 9: Can you prove that the formulas for k and λ in terms of m
that you found in question 3 are correct? [Hint: There are k elements in
D. In how many ways can you form a difference x− y with x and y distinct
elements of D? The number of such differences depends on k. If D is a
difference set, the number of such differences must also be related to λ and
m.]

Question 10: Try to prove that your characterization of the “good” values
of m (in the sense of question 2) is correct. [It is probably too hard to prove
that if m has the right form, then D is a cyclic difference set; but try to
prove that if D is a cyclic difference set, then m has a particular form.]

2.6 Computer Programs

Program: Squares

! Computes the distinct squares mod m for 1<m<=1000

! sqlst(v) counts # times v occurs as square mod m

dim sqlst(0 to 1000)

PRINT "What is the modulus m:";

INPUT m

2.6. COMPUTER PROGRAMS 25

!sqlst(value) automatically initialized at 0

FOR i = 1 TO m - 1

LET value = MOD(i * i, m)

LET sqlst(value) = sqlst(value) + 1

NEXT i

PRINT "The non-zero squares are"

FOR v = 1 TO m - 1

IF sqlst(v) > 0 THEN PRINT v;

NEXT v

END

26 CHAPTER 2. CYCLIC DIFFERENCE SETS

Program: Differences

! This program finds differences of distinct non-zero squares"

! mod m and counts repetitions"

PRINT "What is the modulus m:";

INPUT m

! sqlst(v) counts # times v occurs as square mod m

! difflst(v) counts # times v occurs as diff. of squares

! sq(i) is the ith distinct non-zero square mod m

DIM sqlst(0 to 1000)

DIM difflst(0 to 1000)

DIM sq(1000)

! Counters automatically initialized to 0

FOR i = 1 TO m - 1

LET value = MOD(i * i,m)

LET sqlst(value) = sqlst(value) + 1

NEXT i

! Listing and counting distinct non-zero squares mod m

PRINT "The non-zero squares are"

! numsq counts distinct non-zero squares mod m

LET numsq = 0

2.6. COMPUTER PROGRAMS 27

!initialize numsq

FOR v = 1 TO m - 1

IF sqlst(v) > 0 THEN

PRINT v;

LET numsq = numsq + 1

LET sq(numsq) = v !sq(n)=v makes nth square = v

LET sqlst(v) = 0 !Assures v not listed or counted again

END IF

NEXT v

PRINT

PRINT "Number of distinct squares is "; numsq

! Creating and counting all possible differences

FOR i = 1 TO numsq

FOR j = 1 TO numsq

LET value = MOD(sq(i) - sq(j) + m ,m) !Need value >=0

LET difflst(value) = difflst(value) + 1

NEXT j

NEXT i

! Listing distinct differences and counting repetitions

! numdiff counts distinct non-zero differences of squares mod m

LET numdiff = 0

28 CHAPTER 2. CYCLIC DIFFERENCE SETS

PRINT "Distinct non-zero differences and number of repetitions of each:"

FOR v = 1 TO m

IF difflst(v) > 0 THEN

LET numdiff = numdiff + 1

PRINT v, difflst(v)

END IF

NEXT v

PRINT "Number of distinct differences:", numdiff

PRINT "Again (y/n): ";

GET KEY: AGAIN ! Define the variable ’again’

LOOP UNTIL (AGAIN <> 121) ! 121 is ascii for y

END

Chapter 3

The Euclidean Algorithm

3.1 Introduction

In this chapter we consider an ancient and ingenious observation about the
integers, the Euclidean algorithm. You will

• Learn the Euclidean algorithm;

• Investigate the speed of the algorithm;

• Use the algorithm to investigate properties of the integers; and

• Use the algorithm to solve linear Diophantine equations.

Incidentally, the word “algorithm” refers to a fixed set of directions which
gives a procedure for accomplishing some task. In grade school, we learned
many algorithms. Examples include the algorithms for multiplying integers
and decimal numbers and for dividing one integer into another. The Eu-
clidean algorithm provides a procedure for finding the largest integer that
divides (evenly) two given integers. It is one of the oldest, and most impor-
tant algorithms in mathematics: it generalizes to many other number systems
and algebras in which there are notions of multiplication and addition and
something which generalizes the ordinary concept of “less than” for integers.

29

30 CHAPTER 3. THE EUCLIDEAN ALGORITHM

3.2 The algorithm

When you first learned about fractions, what you now call rational numbers,
you encountered the notion of putting a fraction in “lowest terms.” Your
teacher may have insisted that you not write 6/15, for example, but rather
that you notice that 3 is a factor in both the numerator and denominator,
which can be cancelled, so that you should write 2/5. There are no other
integer factors common to numerator and denominator, so the fraction is now
in lowest terms. Perhaps, though, your teacher was more permissive. You
could be forgiven for writing 5117/6923, even though that fraction is not in
lowest terms. The numbers 5117 and 6923 both contain 301 as a factor, and
accordingly you should cancel it and obtain 17/23. How would you know
that though?

The problem of reducing a fraction a/b to lowest terms is the task, given
two integers a and b, of finding the greatest integer which divides both of
them, the greatest common divisor (gcd), also sometimes called highest com-
mon factor (hcf). We will write, for example

gcd(6, 15) = 3

gcd(5117, 6923) = 301

Before going any further, you might wish to try computing a few gcd’s.

Exercise 1: Compute gcd(81, 42), gcd(72, 95) and gcd(1336517, 1304051).

The problem of computing gcd(a, b) has a very elegant solution, the Eu-
clidean algorithm, known from ancient times. We will illustrate it in com-
puting gcd(5117, 6923) = 301. We start with the two integers 5117 and 6923,
and divide the smaller into the larger, getting the quotient 1 and the remain-
der 1806. Now we discard 6923, the larger of the two integers we started with,
promote 5117 to the position of larger integer, and take the remainder 1806
as the new smaller integer. Now just repeat: divide 1806 into 5117, getting
the quotient 2 and the remainder 1505. Discard the larger 5117, promote
1806 to be the larger integer and take 1505 as the smaller. Divide 1505 into
1806, getting quotient 1 and remainder 301 (aha!). Discard 1806, divide 301

3.2. THE ALGORITHM 31

into 1505, getting quotient 5 with remainder 0. Since 301 divides in evenly,
it is the gcd! Now let’s look at the sequence of calculations:

6923 = 5117(1) + 1806

5117 = 1806(2) + 1505

1806 = 1505(1) + 301

1505 = 301(5) + 0.

Therefore, gcd(6923, 5117) = 301

Why does it work? The explanation goes back to the meaning of
‘quotient’ q and ‘remainder’ r. If a and b are integers, with b 6= 0, then by
division we find q and r with 0 ≤ r < |b| such that

a = qb+ r .

We can make a simple geometric argument to demonstrate this important
fact about the integers and, in particular, to show how the bounds on the
remainder are obtained. On the real line, in the case that b is positive mark
off all integer multiples of b as in Figure 3.1. In the case that b is negative
mark them off as in Figure 3.2.

Now clearly the dividend a is itself a multiple of b, or it must lie between
two multiples of b, say between qb and (q + 1)b. In the first case, r = 0. In
the second case, we can choose the multiple qb to the left of a, so qb < a.
Then r = a− qb is positive and

0 < r < |b|.

(Note that we could have chosen the multiple of b which lies closer to a. In
that case, we may not have a positive remainder; the following bound will
hold instead: 0 < |r| ≤ |b|/2.)

32 CHAPTER 3. THE EUCLIDEAN ALGORITHM

-2b -b 0 b a

r

2b

0.8

Fig. 3.1: b positive and a positive

 2b b 0

a

r

-b -2b

Fig. 3.2: b negative and a positive

3.2. THE ALGORITHM 33

-br10ab-2r1

r1r2

-r1

Fig. 3.3: a, b < 0; |a| < |b|

Now, since

r = a− qb,

any integer which divides both a and b divides the right hand side, and
therefore divides the integer r. In particular gcd(a, b) divides both b and r,
so gcd(a, b) ≤ gcd(b, r). But since a = qb + r, any divisor of both b and r,
including gcd(b, r), is a divisor of a, so gcd(b, r) ≤ gcd(a, b) (same inequality,
but going the other way), and we therefore conclude

gcd(a, b) = gcd(b, r).

This is recognizable as the key step in the Euclidean algorithm: b is promoted
to the place of a, and r takes the place of b. Note that the algorithm is
unaffected after the first step or two by the signs or relative sizes of a and b;
that is, even if a or b or both are negative or if b < a, we soon arrive at a step
in the process after which both ri and ri+1 are positive and 0 ≤ ri+1 < ri.
For example, suppose that a, b < 0 and that |a| < |b|. We then obtain the
diagram shown in Figure 3.3.

The corresponding calculations are

a = b(1) + r1, (0 < r1 < |b|)
b = r1(q) + r2 = −2r1 + r2 (0 < r2 < r1)

r1 = r2(q2) + r3

and so on. Since b < a and r < b, both integers have strictly decreased. If
r = 0, then b was the gcd. If r > 0, we have the same type of problem,
but with smaller integers, so we repeat the process. In the above example it

34 CHAPTER 3. THE EUCLIDEAN ALGORITHM

looked like this:

gcd(5117, 6923) = gcd(1806, 5117)

= gcd(1505, 1806)

= gcd(301, 1505)

= gcd(0, 301)

= 301

The process is a kind of iteration, but unlike the iteration in chapter 1,
we do not need to worry about the issue of convergence: the Euclidean
algorithm finishes in a finite number of steps. It is not an infinite process.
The reason is that in each step the remainder r in the division is strictly less
than in the step before. You can see this in the example: the remainders
were 1806, 1505, 301, and 0, and it is clear from the definition of quotient
and remainder, in particular the condition r < |b|, that the sequence of
remainders must decrease like this. Since the sequence of integer remainders
is strictly decreasing, but bounded below by zero, the process must terminate
in a finite number of steps. It is clear in fact that the number of steps cannot
be bigger than |b|, because (one might think) even in the worst case the
sequence of remainders would be b − 1, b − 2, . . . , 1, 0. Actually this
sequence cannot occur. The Euclidean algorithm works much faster than
that!

Exercise 2. Suppose that |a| < |b|. Show that the Euclidean algorithm
proceeds as described when

1. a > 0 and b > 0,

2. a > 0 and b < 0,

3. a < 0 and b > 0.

3.3 Questions and discussion

Here is a description of the Euclidean algorithm in pseudocode which prints
out the result of each step of the algorithm and counts the number of steps
needed to finish.

3.3. QUESTIONS AND DISCUSSION 35

Program: Euclid1

Input: positive integers a and b, a > b.

Output: steps of the Euclidean algorithm, leading to gcd(a,b)

newa := a, newb : =b

count := 0

WHILE newb > 0

newa := the integer part of newa/newb

newb := the remainder of newa/newb

count := count + 1

PRINT newa, newb

LOOP

PRINT newa, count

! When while-loop finishes, newa = gcd(a, b), newb = 0 and

! count is the number of times the while-loop was executed.

We have put in a counter (called count) to keep track of how many steps
the algorithm takes, and after each round of calculations we print the current
quotient and remainder (called newa and newb, respectively) to show the
progress of the algorithm.

The pessimistic bound at the end of the introduction suggested that if a
and b are around 10,000, then it might take around 10,000 steps to compute
the gcd.

Question 1: Investigate this in a systematic way by running the program
euclid1 with various pairs (a, b), taking 1 < b < a < 100, then 100 <
b < a < 1000, then 1000 < b < a < 10000, etc. (Careful: your computer
language may not handle integers larger than 32767 correctly.) Do bigger
numbers take more steps? How does the dependence go? What is the worst
case, in the sense of taking the most steps? You will notice the program
runs very fast, even when the inputs are large. The number of steps is never
very large—is this just lucky, or is there really a much stricter upper bound
on the number of steps than the number b? Look at how the sequence of
remainders behaves, and try to construct a better bound.

Are you tired of thinking up integer pairs? Let the computer do this for
you by using a random number generator to choose pairs (a, b) at random.

36 CHAPTER 3. THE EUCLIDEAN ALGORITHM

We create a new program euclid2 which chooses at random a pair of integers
(a, b), each between 1 and some preassigned number N , uses the Euclidean
algorithm to compute their gcd, showing all intermediate steps and counting
the number of times it takes the algorithm to terminate.

Program: Euclid2

Input: a positive integer N

Output: a randomly chosen pair of positive integers a and b,

0 < b <= a < N, and the steps of the Euclidean

algorithm, leading to gcd(a,b).

Choose a and b at random between 1 and N

If a < b, switch a and b

Run EUCLID1

Computer languages have different ways of choosing random numbers be-
tween specified values. For example, in most variants of BASIC, each time
one enters rnd, the program picks a random (decimal) number between 0 and
1. Thus, to choose a random number a between 1 and N , you would enter a
line such as “a := integer part of (1 + rnd*N).” As another example,
to choose a number a at random between integers A and B you would enter
a line like ‘a := integer part of (A + rnd*(B-A)).”

Now you have a quick way to generate random pairs of integers between
1 and N , and the pairs are not biased (the way your own choices probably
were), so you can do meaningful statistics. Try the program euclid3 which
follows.

Program: Euclid3

Input: two positive integers N, M

!corresponding to choosing M pairs of integers

!between 1 and N at random

Output: number of times in M trials that the Euclidean algorithm

required 1 step, 2 steps, ..., 20 steps to terminate

Let k[1]:= 0, k[2]:= 0, ..., k[20]:= 0

3.3. QUESTIONS AND DISCUSSION 37

!these will seve as counters

FOR j = 1 TO M

Run EUCLID2 with input N (and suppress printing of output)

IF the output count < 21, THEN k[count] := k[count] +1

NEXT j.

FOR i = 1 TO 20

PRINT k, k[i].

NEXT k.

The variables k[count] keep track of how many times in M random
trials the Euclidean algorithm required 1 step, 2 steps, etc. You may not
see the worst case—after all, there are 108 integer pairs if N=10000, and if,
for example, M= 1000, you are only looking at a miniscule fraction of them.
But you will see typical cases. Try changing N to see how the performance
of the algorithm changes.

Question 2: Re-do question 1 using the program Euclid3 with, say, 1000
randomly chosen pairs (a, b), taking 10 < b < a < 100, then 100 < b <
a < 1000, then 1000 < b < a < 10000, etc. Plot the number of times the
Euclidean algorithm requires k steps against different values of k, 1 ≤ k ≤ 20.
How does the shape of this plot change for 10n < a, b < 10n+1, as n changes
from 1 to 7? Do bigger numbers take more steps on average? How does the
dependence go?

Another interesting thing to keep track of is the gcd’s themselves. It is
clear that any positive integer m is the gcd of some integer pair; for example,
gcd(2m,m) = m. But some numbers seem to turn up as gcd’s more often
than others. You can keep track of this by making a minor change in the
program above, so that it counts the occurences of gcd values instead of the
number of occurences of stopping values. Create euclid4 by replacing the
line

IF the output count < 21, THEN k[count] := k[count] +1

by

IF the output newa < 21, THEN k[newa] := k[newa] +1

(recall that the value “newa” returned by Euclid2 is the GCD of a pair of
numbers chosen at random; the value “count” was the number of times it
took for the Euclidean algorithm to terminate for that pair)

38 CHAPTER 3. THE EUCLIDEAN ALGORITHM

You can also try this with different N ’s, and if you want even better
statistics, you could run it with M random pairs, M > 1000. Is there a
pattern here?

Question 3: Plot the relative frequency of occurrence of 1,2,3,... as gcd(a, b)
against 1,2, 3, ... when a and b are chosen in the interval

10n < b < a < 10n+1.

Do this for several values of n. How do these plots depend on n?

If gcd(a, b) = 1, then the greatest integer which divides both a and b
is 1, but of course 1 divides every integer, so in this case a and b have no
non-trivial factors in common. They are said to be relatively prime (or
coprime). In the language of grade school, a/b is already in lowest terms.

Question 4: What is the probability that integers a and b chosen randomly
are relatively prime? You already have a rough answer to this question if
you did Question 4: it is just the fraction of the time that the integers a and
b are found to have gcd=1. This happens more than half the time. A clever
argument says that the probability is actually 6/π2 ≈ 0.6079. How does this
compare with your experimental determination?

Question 5: Can you construct an argument to show that the fraction of
pairs of relatively prime integers is 6/π2? Look carefully at the distribution
of gcd values and ask yourself how much more probable gcd=1 is than gcd=2
(that is, find the ratio of the number of pairs with gcd =2 to gcd = 1). Ask
the same question for gcd=3 (that is, find a ratio again). Why is your answer
valid? It also helps to notice that the number of integer pairs with both a and
b even numbers is 1/4 of all integer pairs. (Caution: this plausible statement
is very imprecise!) The case a and b both even is not the same thing as
gcd(a,b)=2, of course, since for many such pairs the gcd would be an even
number larger than 2, but it is suggestive. Similarly, the number of integer
pairs with a and b both multiples of 3 is 1/9 of all integer pairs, etc. Finally
you would need to know a famous result of Euler:

∞∑
j=1

1

j2
= 1 +

1

4
+

1

9
+ ... =

π2

6

3.4. LINEAR DIOPHANTINE EQUATIONS 39

The Fibonacci sequence {ni} is defined by

n1 = 1, n2 = 1, nj+1 = nj + nj−1, for j ≥ 2

This sequence has many fascinating properties. The next question invites
you to use the Euclidean algorithm on Fibonacci numbers.

Question 6: What is gcd(nj, nj+1)? (i.e., look at adjacent Fibonacci num-
bers). How many steps does the algorithm take? Do Fibonacci pairs be-
have like your randomly chosen pairs in the previous section? What about
gcd(nj, nj+2)? Is there a pattern here? Try gcd(nj, nj+3).

Your observations should suggest propositions you can try to prove using
the definition of Fibonacci numbers

nj+1 = nj + nj−1

and the basic step

gcd(a, b) = gcd(b, r)

in the Euclidean algorithm. In this connection you will find yourself asking, if
you know gcd(a, b), does this help to find gcd(a,mb), where m is an integer?
This is a question about multiplication of integers in general.

3.4 Linear Diophantine Equations

Let a, b,and c be integers. We can interpret the linear equation

ax+ by = c

as the equation of a line in the x-y plane. If someone were to ask us to
find solutions (x, y), we might be justifiably puzzled—that’s what that line
is! There are infinitely many solutions. But if it were further required that
x and y also be integers, then the situation is not so clear. This is asking
for just those points on the line which happen to have integer coordinates.

40 CHAPTER 3. THE EUCLIDEAN ALGORITHM

Geometrically, these are points where the line ax + by = c hits the integer
lattice, the points of the plane with integer coordinates. But does this happen
at all? An equation which is required to have integer solutions is called a
Diophantine equation.

If the Diophantine equation ax + by = c has solutions, then gcd(a, b)
divides the left side, so gcd(a, b) must divide c. This is clearly a necessary
condition for a solution to exist. Since it might not be satisfied, we see
that some Diophantine equations do not have solutions. On the other hand,
if gcd(a, b) divides c, then this Diophantine equation does have solutions:
the condition is sufficient. In this case the Euclidean algorithm produces a
solution (x, y). More precisely, it produces a solution (x′, y′) to

ax′ + by′ = gcd(a, b)

and then

(x, y) = (c′x′, c′y′) (3.1)

solves the original problem, where c′ = c/ gcd(a, b).

To see that this is true requires that we look at the algorithm in more
detail. The Euclidean algorithm produces a sequence of remainders, each of
the form ax+ by:

r1 = a− bq1 = a · 1 + b(−q1)
r2 = b− r1q2 = b− (a− bq1)q2 = a(−q2) + b(1 + q1q2)

r3 = r1 − r2q3 = a(1 + q2q3) + b(−q1 − q3(1 + q1q2))

·
·
·

0 = rn−2 − rn−1qn

In the nth (last) line, we see rn−1 = gcd(a, b), since rn−1 divides evenly
into rn−2, and rn−1 is of the form ax+ by because all the remainders are. We
have shown this for r1, r2, and r3 explicitly in the first three lines. We can
also extend the notation, preserving the pattern, so that

3.4. LINEAR DIOPHANTINE EQUATIONS 41

r−1 = a = 1 · a+ 0 · b
r0 = b = 0 · a+ 1 · b

Now we just have to keep track of the coefficients of a and b as we use
the Euclidean algorithm, and note the result in line n − 1. If we label the
coefficients in the obvious way

rj = axj + byj

then for any k > 0

rk = rk−2 − rk−1qk = a(xk−2 − xk−1qk) + b(yk−2 − yk−1qk)

which is a recursion relation for the coefficients:

xk = xk−2 − xk−1qk
yk = yk−2 − yk−1qk

Starting with x−1 = 1, y−1 = 0, x0 = 0, y0 = 1 from the equa-
tions for r−1 and r0, we can use this recursion relation n − 1 times to find
(x, y)=(xn−1, yn−1). This sort of thing is best done by a computer, of course.
Here is pseudocode for the program Euclid5.

Program: Euclid5

Input: integers a and b, with a > b > 0.

Output: integer solutions to ax + by = gcd(a,b)

a1 := a, b1 := b

xold := 1, yold := 0

x := 0, y := 1

c := 1.

WHILE c <> 0 DO

Let q := int(a/b), c := a - q*b !quotient and remainder

IF c = 0 THEN

42 CHAPTER 3. THE EUCLIDEAN ALGORITHM

print GCD = x*a1 + y*b1

xnew := xold - q*x, ynew := yold - q*y

xold := x, yold := y

x := xnew, y := ynew, a := b, b := c

LOOP

Exercise 3: Try it on some examples.

The Euclidean algorithm gives a particular solution to the Diophantine
equation ax+ by = c, if there are any solutions at all. In fact, if there is one,
there is an infinite number, regularly spaced along the line. Two distinct
solutions would mean

ax+ by = ax′ + by′ = c

so that

a

gcd(a, b)
(x− x′) =

b

gcd(a, b)
(y′ − y)

Since the first factors on each side do not have any factors in common
(these have been divided out), it must be that they divide x− x′ and y− y′,
i.e.,

x− x′ =
−mb

gcd(a, b)
⇒ x′ = x+

mb

gcd(a, b)

y − y′ =
ma

gcd(a, b)
⇒ y′ = y − ma

gcd(a, b)

for some integer m. Conversely, every choice of an integer m and a solution
(x, y) gives a new solution (x(m), y(m)) since

ax(m) + by(m) = a

(
x+

mb

gcd(a, b)

)
+ b

(
y − ma

gcd(a, b)

)
= ax+ by = c

3.4. LINEAR DIOPHANTINE EQUATIONS 43

So starting with the solution given by the Euclidean algorithm, which we
can call the m = 0 solution, we get another solution for each nonzero integer
value of m.

Here is a simple, though rather silly, example. I have a certain number
of $5 bills and a certain number of $2 bills, and I have $5 in all. What bills
do I have? Phrasing this as

5f + 2t = 5

and handing it to the Euclidean algorithm, I seem to have 5 five-dollar bills
and −10 two-dollar bills, i.e., f = 5, t = −10! Of course we can fix this
up by trading in 2 five-dollar bills for 5 two-dollar bills, twice. This is the
m = −2 solution, f(−2) = 5 − 2 · 2 = 1, t(−2) = −10 + 2 · 5 = 0. Still one
wonders why the Euclidean algorithm gives this strange result.

It turns out the Euclidean alorithm always produces the (x, y) nearest the
origin, i.e., the m = 0 solution is the “smallest” solution (minimal solution)
in the sense of minimizing x2 + y2. In the above example, the Euclidean
algorithm solves

5x+ 2y = gcd(5, 2) = 1

and the solution it finds, (x, y) = (1,−2), is closer to (0,0) than other ones,
like the m = 1 solution, (3,−7), or the m = −1 solution, (−1, 3). We then
scale by the factor 5, (f, t) = (5x, 5y) (according to equation(3.1)), and that
is where that first solution comes from. (Note that the scaled solution is not
the minimal solution to the original problem though! In fact the minimal
solution is the one we wanted.) Verify in a few other examples that the
Euclidean algorithm produces the minimal solution.

Question 7: Can you think of a proof that the Euclidean algorithm produces
the minimal solution?

Here is an outline of a proof which you can fill in.

1. Show that the Euclidean algorithm produces the same solution (x, y)
to ax + by = c if you divide both sides through by gcd(a, b), so that it is
enough to consider the case gcd(a, b) = 1. You can verify this with computer
examples, but of course that is not a proof. On the other hand looking at
what the computer is doing may lead you to a proof.

44 CHAPTER 3. THE EUCLIDEAN ALGORITHM

2. Let (x(m), y(m)) denote the shifted solutions as above and let (x, y) denote
the solution produced by the Euclidean algorithm (which could be thought
of as (x(0), y(0))). Show that x2(m) + y2(m) is a quadratic function of m,
and hence that it would be enough to show that (x, y) is no farther from
the origin than (x(1), y(1)) and (x(−1), y(−1)). Show that this in turn is
equivalent to

|2ay − 2bx| ≤ a2 + b2 (3.2)

3. Strategy: if we could show

|2y| ≤ a, |2x| ≤ b (3.3)

then equation (3.2) would follow by the triangle inequality (show this). You
might verify that this strategy is promising by checking whether equation
(3.3) is true in examples.

4. Since b = 1 is a trivial case, we can assume 1 < b < a. Show that if the
Euclidean algorithm finishes in exactly 1 step, (i.e., if we get remainder r = 1
in the first step) then the inequalities in equation (3.3) are true.

5. The magic of induction! On the assumption that the inequalities in
equation (3.3) are true for any integer pair that requires N steps in the
Euclidean algorithm, show that they are also true for a pair that requires
N + 1 steps. Do this by noting that the transition from gcd(a, b) to gcd(b, r)
in the basic step of the Euclidean algorithm reduces the number of steps by
1. Thus, by the induction hypothesis you know

|2y′| ≤ b, |2x′| ≤ r

in the Euclidean algorithm solution to

bx′ + ry′ = 1

Now work back one step, using a = qb+ r.

3.5. ADDITIONAL TOPIC 45

3.5 Additional topic

Throughout this chapter we have been talking about the arithmetic of the
integers, but usually we just wrote symbols like a, b, ..., and just used certain
properties, for example that we could multiply, add, that there was an order
relation <, etc. Does any of this make sense if a and b stand for something
else? Look at the case of polynomials in one variable x, since there is a
“long division” algorithm for polynomials which, for any polynomial pair
(a, b), produces a quotient polynomial q and remainder polynomial r such
that a = qb+r holds, with the degree of r less than the degree of b. Is there a
Euclidean algorithm for polynomials? Does it make sense to talk of the gcd
of two polynomials, and would this algorithm find it?

3.6 Computer Programs

Euclid1

clear

input prompt "a = ": a

input prompt "b = ": b

if a>b then

let u=a

let v=b

else

let u=b

let v=a

end if

print u,v

let k=0

let r=1

do while(r>0)

let q=int(u/v)

let r=u-v*q

let oldr=v

let u=v

46 CHAPTER 3. THE EUCLIDEAN ALGORITHM

let v=r

print oldr, r

let k=k+1

loop

print

print "GCD(";a;",";b;") = ";oldr

print "Number of steps was ";k

end

Euclid2

clear

randomize

let N=10000

let a=int(1+rnd*N)

let b=int(1+rnd*N)

if a>b then

let u=a

let v=b

else

let u=b

let v=a

end if

print u,v

let k=0

let r=1

do while(r>0)

let q=int(u/v)

let r=u-v*q

let oldr=v

let u=v

let v=r

print oldr, r

let k=k+1

loop

print

print "GCD(";a;",";b;") = ";oldr

3.6. COMPUTER PROGRAMS 47

print "Number of steps was ";k

end

Euclid3

clear

randomize

dim count(20)

let N=10000

for j=1 to 1000

let a=int(1+rnd*N)

let b=int(1+rnd*N)

if a>b then

let u=a

let v=b

else

let u=b

let v=a

end if

let k=0

let r=1

do while(r>0)

let q=int(u/v)

let r=u-v*q

let oldr=v

let u=v

let v=r

let k=k+1

loop

if(k<21) then let count(k)=count(k)+1

next j

print "Steps","Occurrences"

for j=1 to 20

print j,count(j)

next j

end

48 CHAPTER 3. THE EUCLIDEAN ALGORITHM

Euclid4

clear

randomize

dim count(20)

let N=10000

for j=1 to 1000

let a=int(1+rnd*N)

let b=int(1+rnd*N)

if a>b then

let u=a

let v=b

else

let u=b

let v=a

end if

let k=0

let r=1

do while(r>0)

let q=int(u/v)

let r=u-v*q

let oldr=v

let u=v

let v=r

let k=k+1

loop

if(oldr<21) then let count(oldr) = count(oldr)+1

next j

print "GCD","Occurrences"

for j=1 to 20

print j,count(j)

next j

end

Euclid5

clear

3.6. COMPUTER PROGRAMS 49

input prompt "a = ": a

input prompt "b = ": b

if b>a then

let c=b

let b=a

let a=c

end if

let a1=a

let b1=b

let xold=1

let yold=0

let x=0

let y=1

let r=1

do while(r>0)

let q=int(a/b)

let c=a-q*b

if(c=0) then

print "GCD =";b;" =";a1;"*";x;"+";b1;"*";y

stop

end if

let xnew=xold-q*x

let ynew=yold-q*y

let xold=x

let x=xnew

let yold=y

let y=ynew

let a=b

let b=c

loop

end

50 CHAPTER 3. THE EUCLIDEAN ALGORITHM

Chapter 4

Prime Numbers

4.1 Introduction

The natural numbers, or counting numbers as they are often called, have
been objects of human curiosity and investigation since the very beginnings
of our intellectual history. Indeed the first rigorous treatment of number
theory appears alongside that of geometry in the work of Euclid around 300
B.C.E. In this unit, you will explore patterns of behavior of an especially
important group of numbers, the primes. In investigating primes you will

• Look closely at certain of their regularities and irregularities;

• Examine the kinds of questions mathematicians have asked about them;
and

• See evidence for some conjectures which can now be proved as theorems
and for others whose explanations remain maddeningly elusive.

In the process, you may

• Make some new interesting observations, or

• Discover ways in which you can extend your experimentation to look
at variations on the questions posed in this unit.

In the end, perhaps you will find your own curiosity piqued, or even captured,
by their intriguing magic.

51

52 CHAPTER 4. PRIME NUMBERS

4.2 Listing prime numbers

Recall that a natural number n is prime if it is divisible only by 1 and itself
(and if it is not 1). The first few primes are {2, 3, 5, 7, 11, 13, 17, . . .}. You
probably remember learning to factor natural numbers in junior high school,
and you might even remember asking the question, “How do I know when I’m
finished?” The answer, of course, was that you were finished when no single
factor could be written as a product of two still smaller ones. In other words,
the factoring process ended when you had written that natural number as a
product of powers of prime numbers. For example,

60984 = 4× 15246 = 2× 2× 2× 7623

= 2× 2× 2× 3× 2541

= 2× 2× 2× 3× 3× 847

= 2× 2× 2× 3× 3× 7× 121

= 2× 2× 2× 3× 3× 7× 11× 11

= 23 × 32 × 7× 112.

Given any integer, we can produce a similar factorization, or decomposition,
into products of primes; in this way, the primes are the multiplicative building
blocks for our arithmetic.

Now this decomposition has another important property, which you prob-
ably remember but hardly notice, namely its uniqueness. No matter how we
break 60984 into smaller factors, our final prime decomposition will always
be 23 × 32 × 7 × 112. Unique factorization, as it is called, assures us that
this is the case for any number—no matter how you factor it, the final 53.
expression as a product of primes will always be the same.

Although we often take this property for granted and think it obvious,
it is not so easy to prove. In fact, unique factorization is a very powerful
property of our own familiar number system, and, as some of you who go on
to study number theory will learn, many other arithmetic structures exist
which are not blessed with such reliability.

Incidentally, this crucial property of unique factorization would be lost if
we allowed 1 to be defined as a prime number since any number of factors of

4.2. LISTING PRIME NUMBERS 53

1 can be written into a product without changing it. So, for example,

60984 = 23 × 32 × 7× 112

= 1× 23 × 32 × 7× 112

= 15 × 23 × 32 × 7× 112.

To help us in our study of primes, we must first find a method for produc-
ing relatively long lists of them. One of the earliest methods works as follows.
Begin with a list of natural numbers like the one in the following diagram.
First cross out 1. The smallest remaining number is 2, which, by definition,
is prime; leave it, but cross out all subsequent multiples of 2 beginning with
22 = 4, thus eliminating all remaining even numbers in the list. Now the
smallest remaining number is 3, again a prime. Cross out all subsequent
multiples of 3, beginning with 32 = 9 (note that 3 × 2 = 6 is already gone
because it is also a multiple of 2). The next number left is 5, so delete all
subsequent remaining multiples of 5. The smallest number remaining after
5 is 7, so delete all subsequent multiples of 7. Continue in this way, deleting
all subsequent multiples of each prime as it appears.

Exercise 1: Try out this method on the following table to create a list of
all prime numbers between 1 and 100.

1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29
30 31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49
50 51 52 53 54 55 56 57 58 59
60 61 62 63 64 65 66 67 68 69
70 71 72 73 74 75 76 77 78 79
80 81 82 83 84 85 86 87 88 89
90 91 92 93 94 95 96 97 98 99

This ancient method for producing primes has the advantage of utilizing
only the simple operation of multiplication. It was developed in the 3rd
century BCE by Eratosthenes and is called the Sieve of Eratosthenes, after
its creator. Modern versions of this simple sieve are used today to provide
powerful estimates of the number of primes with certain properties.

54 CHAPTER 4. PRIME NUMBERS

For our purposes, we will find it simpler to use division to generate our
lists of primes. Though the operation is inherently more complicated than
that of multiplication, the resulting computer program for determining pri-
mality is more transparent than one employing sieves. We proceed as follows.
Suppose we wish to decide whether or not a given number m in our desired
range is a prime. Obviously, we can eliminate immediately all even numbers
larger than 2 from our list. Now, if m is odd and not a prime, then m = ab
where 2 < a, b < m. To avoid duplication of the form 15 = 3 × 5 = 5 × 3,
we may assume that a ≤ b. We can test m for such a non-trivial decompo-
sition by looking at whether the quotient m/a is an integer for some integer
a in the range 2 < a < m. However, we can make this test more efficient
by noting that we need to consider only those a such that a ≤

√
m. For

if a >
√
m, then b ≥ a >

√
m, and ab >

√
m
√
m = m. Thus, if m/a

is an integer for any integer a in the range 2 < a ≤
√
m, then m is not

prime. As usual, we let int(x) denote the least integer less than or equal
to x (so, for example, int(3.15) = int(π) = int(3) = int(3.999) = 3 and
int(−3.15) = int(−π) = −4). Here is a program that decides whether or not
a number is prime.

Program: Prime Test

Input: an integer n

Output: 1 if n is a prime, 0 otherwise

prime:= 1

a := 2

WHILE prime = 1 AND a < int(sqrt(n)) + 1 DO

IF n - int(n/a)*a = 0 THEN prime := 0

a := a + 1

LOOP

PRINT prime

Now that we have a program that determines whether a number is prime,
here is a program that lists the primes up to a specified integer.

Program: List Primes

4.2. LISTING PRIME NUMBERS 55

Input: an integer n

Output: a list of primes less than or equal to n

WHILE m < n +1 DO

IF m is prime, THEN PRINT m

m:= m + 1

LOOP

It is perhaps worth mentioning that the first line in the do-while loop in the
program above actually calls the program prime test.

Exercise 2: Examine the corresponding programs at the end of this chapter
and explain each step.

Exercise 3: Use this program to produce the set of primes less than 100, and
compare it to the result of your hand calculations using the sieve. (Needless
to say, the two lists should be identical.)

Exercise 4: Now run the program to produce some large lists of primes.
What observations can you make about them? Are there obvious patterns,
or do they seem to behave like a fairly irregular collection?

In order to get some feeling for the number of primes, let us define a
function which counts the number of prime numbers less than or equal to a
number x. This function is traditionally denoted π(x) and

π(x) = #{p ≤ x : p prime}.

For example, π(10) = 4 since there are exactly 4 primes less than or equal
to 10, namely those in the set {2, 3, 5, 7}. Likewise,

π(25) = #{2, 3, 5, 7, 11, 13, 17, 19, 23} = 9.

The following program is similar to the one above for listing primes, but
modified to calculate π(x) or, as we will call it in the program, π(n).

Program: Count Primes

56 CHAPTER 4. PRIME NUMBERS

Input: an integer n

Output: pi(n), the number of primes less than or equal to n

pi := 0, m := 2

WHILE m < n + 1 DO

IF m is prime THEN pi := pi + 1

m:= m + 1

LOOP

PRINT pi

Please be sure that you understand why the program works.

Exercise 5: Use this program to calculate π(100), π(1000), π(5000), π(10000),
π(50000), and π(100000). (Be patient; these last two will take some time.
The last, in particular, may take up to 10 minutes.) If you wish, you could
also calculate π(1000000); just be prepared to go away and come back in a
few hours. If you were to continue these calculations with larger and larger
values of n, what do you think would happen to π(n)? Why?

Exercise 6: Euclid showed that there were infinitely many primes. Have
you come across a proof? Can you find one? Here are some questions to
get you thinking about a possible proof. Suppose p1 and p2 are two prime
numbers. Make a new number q = p1p2+1. Could p1 be a factor of q? Could
p2? Why or why not?

4.3 Functions generating primes

We now have a method for listing and counting primes. However, we might
ask whether a formula exists which will produce only primes and all of them.
For example, can one find a non-constant polynomial in one variable with
integer coefficients which will generate the whole list of primes? Can we find
such a formula if we allow exponentials, more than one variable, and perhaps
a larger set of numbers as exponents and coefficients? If a formula like the
one we seek does not exist, can we find a simple polynomial or exponential
function in one variable which might produce an infinite, if incomplete, list
of primes?

4.3. FUNCTIONS GENERATING PRIMES 57

Exercise 7: In the 1640’s, Mersenne studied numbers of the form 2p − 1,
p a prime, looking for a formula which generated primes. You can easily
duplicate his hand calculations for all primes p < 10. What do you discover?
Conjecture?

We can extend these calculations using a computer. Here is a program that
checkswhether 2p − 1 is a prime for a given prime p.

Program: Mersenne Check

Input: a prime number p

Output: 1 if 2^p - 1 is prime, 0 otherwise

IF n = 2^p -1 is prime, THEN PRINT 1

ELSE PRINT 0

Exercise 8: Use the program to continue Mersenne’s calculations for p < 40.
Because of the limitations of the programming language you are using, you
may get an overflow as p approaches 40. Of the primes for which you could
obtain an answer, what percentage of the resulting numbers are prime? In

1772 Euler looked for simple polynomials in one variable with integer co-
efficients which might generate primes. Of course, a reducible polynomial,
that is, one which can be factored into two polynomials of smaller degree
with integer coefficients, will never produce primes (why?); hence, only ir-
reducible polynomials could be candidates. Euler’s most famous example is
the quadratic polynomial x2 + x+ 41. The following is a modification of the
program above for Mersenne numbers which will let you reproduce Euler’s
calculations.

Program: Euler Check

Input: an integer k

Output: integers m from 0 to k for which m^2+m+41 is prime

FOR m = 0 TO k

n := m^2 + m + 41

IF n is prime, THEN PRINT m

NEXT m

58 CHAPTER 4. PRIME NUMBERS

Exercise 9: Run the program for k = 10, 20, 30, 40, 50. What observations
do you make?

Exercise 10: Modify the program to test the polynomialx2 − 79x + 1601
for for k = 10, 20, 30, 40, 50, 60, 70, 80 and 90 What do you observe in
this case? (Remember to enter the polynomial as m2 − 79m + 1601 in your
modified program.) How do your results compare to those for exercise 8?
Can you explain what you observe?

Exercise 11: Now, by hand, evaluate the polynomial x2 + x + 2 for small
integer values of x, say 0 ≤ x ≤ 7. What is the longest string of primes
it yields and for which values of x do they appear? Can you write a proof
which explains your observations?

Exercise 12: Modify the program to test various irreducible quadratic poly-
nomials of the form x2 + x+ q, for q = 3, 5, 11, 17, and 41 and k ≤ 50. For
each q fill out the following table:

q length of longest string of primes values of m which yield the
primes in the longest string

2
3
5
11
17
41

We have chosen the numbers q above rather carefully. Modify your program
to see what happens if q = 7 or q = 37.

With the small set of experiments above in mind, you might ask yourself
whether there exists a formula whose output is exactly the whole set of prime
numbers or whether there exists a formula which takes on only prime values,
even if it does not produce the complete list of primes. Do other related
questions arise as you examine your results?

We have some sense from our results above that the problem of finding
simple formulas which take on only prime values is a difficult one. Suppose

4.3. FUNCTIONS GENERATING PRIMES 59

we pose a somewhat different question: Do simple formulas exist which yield
an infinite number of primes among their output? The answer to this one
is a resounding yes. In fact, we all know that the arithmetic progression
{1 + 2k | k an integer} contains the complete set of odd integers and that
among these lie all the prime numbers except 2. On the other hand, the
progression {0+2k | k an integer} = {2k | k an integer} contains the single
prime number 2. Hence, the polynomial 2x+1 generates an almost complete
list of primes as x takes on all positive integer values, while the polynomial
2x generates only one.. In looking more closely at the list of odd numbers,
we see that each one lies either in the progression {1 + 4k |k an integer}
or in the progression {3 + 4k | k an integer}. Let us examine these to see
how the primes divide themselves between the two progressions. Do they
distribute themselves unevenly, as in the case of the progressions above with
difference 2, or do they fall more equally into each category? Let

π1(n) = #{primes p| p ≤ n and p = 1 + 4k some positive integer k}

and

π3(n) = #{primes p| p ≤ n and p = 3 + 4k some positive integer k}

Exercise 13: Find an expression relating π(n), π1(n), and π3(n).

Exercise 14: Calculate by hand π1(25), π3(25), π1(50), π3(50),π1(75), π3(75),
π1(100), and π3(100).

Here is a modification of of the program for finding π(n) to evaluate π1(n)
and π3(n). The name of the program reflects the language commonly used to
describe the arithmetic progressions {m+4k | k an integer } for m = 0, 1, 2, 3.
We say an integer is congruent to m mod 4 if it is in the arithmetic
progression {m+ 4k | k an integer }. For example, 15 is congruent to 3 mod
4, and 130 is congruent to 2 mod 4. Using this language, π1(n) is the number
of primes less than or equal to n that are congruent to 1 mod 4, and π3(n)
is the number congruent to 3 mod 4.

Program: Count Primes Mod 4

Input: an integer n

60 CHAPTER 4. PRIME NUMBERS

Output: pi1(n) and pi3(n)

pi1 := 0

pi3 := 0

a := 1

b := 1

WHILE 4a + 1 < n+ 1 DO

IF 4a +1 is prime THEN pi1 := pi1 + 1

a := a + 1

LOOP

WHILE 4b + 3 < n + 1 DO

IF 4b + 3 is prime THEN pi3 := pi3 + 1

b := b + 1

LOOP

PRINT "pi1 = " pi1

PRINT "pi3 = " pi3

Exercise 15: Use the program above to fill in the following table.

n π(n) π1(n) π3(n) π1(n)/π(n) π3(n)/π(n)

25
50
100
1000
10000
100000

What conjectures might you make on the basis of this evidence about the
way the primes divide themselves between these two progressions? Do your
observations suggest that an infinite number of primes lie in each? Why?

Exercise 16: If you came up with a proof that there are infinitely many
primes, can you adapt it to show that there are infinitely many primes in
one of the two arithmetic progressions above? Here are some questions to
get you started. If a and b are any two integers, what are 4ab+ 1 and 4ab+ 3
congruent to mod 4? If a and b are two integers and you know what each of

4.4. DISTRIBUTION OF PRIMES 61

them is congruent to mod 4, can you determine what ab is congruent to mod
4? Going the other way, if you know what ab is congruent to mod 4, can you
say anything about what the integers a and b might be congruent to mod 4?

4.4 Distribution of primes

Another set of questions concerns how primes are distributed. Do they be-
come denser or sparser as they proceed out the number line? To answer this,
modify your program for calculating π(n) as follows so that you can count
the number of primes in various intervals of equal length.

Program: Count Primes in Interval

Input: two integers k, n (2 < k < n)

Output: the number pi(k, n) of primes in the interval [k, n]

a := k

pi = 0

WHILE a < n + 1 DO

IF a is prime, THEN pi := pi + 1

a := a + 1

LOOP

PRINT pi

Exercise 17: Now calculate π(k, n), the number of primes in the inter-
val [k, n], for the ranges [1, 100], [1001, 1100], [10001, 10100], and finally
[100001, 100100]. Do you get more or fewer primes in these intervals of length
99 as they move out the number line? Try the same experiment with some
other intervals of larger length.

Given a prime, can we know how far to go to the next one? More generally,
can we say something about the differences, or gaps,between consecutive
primes?

62 CHAPTER 4. PRIME NUMBERS

Exercise 18: Enumerate the list of primes less than 1000 byp1 = 2, p2 = 3,
p3 = 5, p4 = 7, etc., and label each consecutivedistance as follows:

d1 = p2 − p1 = 3− 2 = 1,

d2 = p3 − p2 = 5− 3 = 2,

d3 = p4 − p3 = 7− 5 = 2,
...

dk = pk+1 − pk.

You can simply list these differences, or you can look at them geometrically
by plotting the points (pk, dk) on a graph.What differences appear? How
many times does each appear? What other observations do you make. Do
you have some conjectures about the gaps between consecutive primes as the
primes grow larger? Can you write a simple program which would let you
examine some of your conjectures for a much larger list of primes?

Exercise 19: If we cannot find a formula which produces all the primes less
than a given number, x, can we at least find one which will tell us how many
there are? Use your previous calculations of π(n) to fill in the following table.
(Note: by log n, we mean the logarithm to the base e, which is often written
loge n or lnn.)

n π(n) π(n)/n π(n)/
√
n π(n)/ log n π(n)/(n/ log n)

10
100
1000
10000
100000

What do you conjecture the limit of each ratio will be as n increases? What
does that mean about π(n) compared to n, n/ log n, and

√
n as n increases?

(If you have access to a good graphing package (e.g., Minitab), you may want
to try to plot your results above.)

Incidentally, the first estimate for the way in which the number of primes
grows was conjectured by Gauss in 1792. However, he was not able to prove

4.5. FURTHER READING 63

his estimate. It was eventually proved in 1896 independently by Hadamard
and de la Vallée Poussin using methods from the theory of complex variables
and is called the Prime Number Theorem. A much more precise estimate,
with detailed error estimates, is equivalent to a famous conjecture that Rie-
mann made in 1859. This conjecture, the so-called Riemann hypothesis, has
resisted all efforts to prove it and is arguably the most famous open problem
in mathematics.

Exercise 20: Using the fact that π(n)/n is the proportion of numbers less
than n which are prime, does your conjecture say that the primes are getting
more or less dense as n grows? Use your conjecture to estimate the number
of primes between 10000 and 11000 and check the accuracy of this estimate
by comparing with the actual number. Use your conjecture to estimate the
number of primes between 100000 and 101000.

4.5 Further reading

If, after scrutinizing your list of primes, you find that you cannot see any
simple pattern emerging, do not feel downhearted. Nobody else has been
able to do that either; the primes appear to be a rather irregularly behaved
set of numbers. However, there is a whole body of interesting theorems which
describe some of their properties, as well as an enormous number of intriguing
questions which arise from closer studies of their behavior.

Here are a few books that you can profitably consult for more information
– the second is very much in the spirit of this unit and the third is a classic.

1. Apostol, Tom,M., An Introduction to Analytic Number Theory, Springer-
Verlag, New York, 1976.

2. Giblin, Peter, Primes and Programming: An Introduction to Num-
ber Theory with Computing , Cambridge University Press, Cambridge,
1993.

3. Hardy, G.H. and Wright, E.M., An Introduction to the Theory of Num-
bers , Oxford University Press, Oxford, 1938 (first edition), 1979 (fifth
edition).

64 CHAPTER 4. PRIME NUMBERS

4. Ribenboim, Paulo, A Book of Prime Number Records, Springer-Verlag,
New York, 1988 (revised 1990).

A recent article by Paulo Ribenboim also deals further withmany of the issues
that your investigations will have raised: Ribenboim, Paulo, “Prime Number
Records,” The College Mathematics Journal , 25 (1994), 280-290.

4.6 Computer Programs

4.6.1 TrueBASIC programs

Test Primes

PRINT "prints 1 if n is prime, 0 if not"

INPUT n

DEF prime(n) ! Returns 1 if n prime, 0 otherwise

LET p =1

LET a = 2

DO until a > INT(SQR(n))

IF n-INT(n/a)*a = 0 then let p=0

IF n-INT(n/a)*a = 0 then EXIT DO

LET a = a + 1

LOOP

LET prime = p

END DEF

PRINT prime(n)

END

List Primes

CLEAR

PRINT "List primes less than or equal to n"

Input n

DEF prime(n) ! Returns 1 if n prime, 0 otherwise

LET p =1

4.6. COMPUTER PROGRAMS 65

LET a = 2

DO until a > INT(SQR(n))

IF n-INT(n/a)*a = 0 then let p=0

IF n-INT(n/a)*a = 0 then EXIT DO

LET a = a + 1

LOOP

LET prime = p

END DEF

LET m = 1

DO until m > n

IF prime(m) = 1 then print m;

LET m = m + 1

LOOP

END

Count Primes

CLEAR

PRINT "Count primes less than or equal to n"

Input n

DEF prime(n) ! Returns 1 if n prime, 0 otherwise

LET p =1

LET a = 2

DO until a > INT(SQR(n))

IF n-INT(n/a)*a = 0 then let p=0

IF n-INT(n/a)*a = 0 then EXIT DO

LET a = a + 1

LOOP

LET prime = p

END DEF

LET m = 2

LET pin =0

DO until m > n

IF prime(m) = 1 then let pin = pin + 1

LET m = m + 1

LOOP

PRINT pin

END

66 CHAPTER 4. PRIME NUMBERS

Mersenne Check

CLEAR

PRINT "Compute whether 2^p - 1 is prime"

Input p

DEF prime(n) ! Returns 1 if n prime, 0 otherwise

LET p =1

LET a = 2

DO until a > INT(SQR(n))

IF n - INT(n/a)*a = 0 THEN let p=0

IF n - INT(n/a)*a = 0 THEN EXIT DO

LET a = a + 1

LOOP

LET prime = p

END DEF

LET n = 2^p -1

IF prime(n) = 1 THEN PRINT "prime" ELSE PRINT "not prime"

END

Euler Check

CLEAR

PRINT "list numbers from 0 to k for which m^2 + m + 41 is prime"

Input k

DEF prime(n) !returns 1 if n prime, 0 otherwise

LET p =1

LET a = 2

DO until a > INT(SQR(n))

IF n - INT(n/a)*a = 0 then let p=0

IF n - INT(n/a)*a = 0 then EXIT DO

LET a = a + 1

LOOP

LET prime = p

END DEF

FOR m = 0 to k

Let n = m^2 + m + 41

IF prime(n) = 1 then print m;

4.6. COMPUTER PROGRAMS 67

NEXT m

END

Count Primes Mod 4

CLEAR

PRINT "compute pi1(n) and pi3(n)"

Input n

DEF prime(n) ! Returns 1 if n prime, 0 otherwise

LET p =1

LET a = 2

DO until a > INT(SQR(n))

IF n - INT(n/a)*a = 0 then let p=0

IF n - INT(n/a)*a = 0 then EXIT DO

LET a = a + 1

LOOP

LET prime = p

END DEF

LET pi1 = 0

LET pi3 = 0

LET b = 1

LET c = 0

DO until 4*b + 1 > n

IF prime(4*b + 1) = 1 then let pi1 = pi1 + 1

let b = b+1

LOOP

DO until 4*c + 3 > n

IF prime(4*c + 3) = 1 then let pi3 = pi3 + 1

let c = c + 1

LOOP

PRINT "pi1 =";

PRINT pi1

PRINT "pi3 =";

PRINT pi3

END

Count Primes in Interval

68 CHAPTER 4. PRIME NUMBERS

PRINT "Compute pi(k,m)= number of primes in interval [k,m]"

PRINT "INPUT k"

Input k

PRINT "Now input m"

INPUT m

DEF prime(n) ! Returns 1 if n prime, 0 otherwise

LET p =1

LET a = 2

DO until a > INT(SQR(n))

IF n-INT(n/a)*a = 0 then let p=0

IF n-INT(n/a)*a = 0 then EXIT DO

LET a = a + 1

LOOP

LET prime = p

END DEF

if k = 1 then let k = 2

let b = k

let count = 0

DO until b > m

IF prime(b) = 1 then let count = count + 1

let b = b + 1

LOOP

PRINT count

END

Chapter 5

The Coloring of Graphs

5.1 Introduction

In this laboratory, we develop the concept of properly coloring the vertices of
a finite graph. This notion has a long history arising first from the famous
“Four Color Theorem”, which deals with the coloring of a map on a planar
surface. We shall introduce the idea with a very different type of problem.
In this laboratory, we shall:

• Describe a problem of scheduling of courses in a limited number of time
periods.

• Translate this problem to one of coloring the vertices of a finite graph.

• Introduce the chromatic polynomial of a finite graph—giving a very
general solution to the scheduling problem.

• Find an algorithm for calculating the chromatic polynomial of any finite
graph.

• Use a computer program to calculate chromatic polynomials for numer-
ous graphs, conjecturing (and in some cases proving) the relationships
between the coefficients of the polynomial for a graph and certain ge-
ometric properties of the graph.

69

70 CHAPTER 5. THE COLORING OF GRAPHS

5.1.1 A scheduling problem

Example: A number of people have signed up for more than one of the
six courses to be given in the mathematical sciences at the local Evening
College. It is determined that these students must take these courses for
their programs. You, as the Registrar, are attempting to find a schedule so
that each person can take the courses they want. The available evening time
slots are 8 o’clock, 9 o’clock, and 10 o’clock. There are plenty of classrooms
available.

The courses are: Calculus (C), Statistics (S), Data Structures (D), Nu-
merical Analysis (N), Graphics (G), and Operating Systems (O).

Suppose that the enrollments are as follows (and that all the students
have different last names and that each of them could schedule classes at any
of the three times):

Calc. Stat. Data St. Num.An. Graphics Op.Sys.
Axel Carlton Blim Ames Bennett Ames
Eagle Carter Conley Barnes Carlton Barnes
Harns Eckert Jones Franck Conley Blim
Janes Harns Martinez Frick Forrest Forrest
Plum Jones Smith LaMire Kennan Janes
Snapper Smith Swee Wu Lyon Myers
Stram Wills Wu Weaver Talbot
Wong West

Wills

Is it possible for you (the Registrar) to set schedules for the courses in the
times available (8, 9, and 10 o’clock) so that all of these students can be
accommodated? If so, how do you do it? Could you do this with two meeting
times per week, say 8 and 9 o’clock?

See if you can find a satisfactory pattern of meeting times for these courses
within the three time slots. Enter course schedules in a chart like the one
below.

5.2. INTRODUCTION TO THE MATHEMATICAL IDEAS 71

Times Courses for this time

8 o’clock

9 o’clock

10 o’clock

How many different satisfactory patterns are there?

The questions above represent two of the most common problems found
in the area of combinatorial mathematics: first, there is the question of
determining the existence of a solution and, second, that of counting the
number of solutions, if any do exist.

5.2 Introduction to the mathematical ideas

5.2.1 Translation to an equivalent problem

Here we look again at the problem just posed with the idea of developing
a method (an algorithm) for determining the number of possible meeting
times for the class. To get at it, we employ an often fruitful technique in
mathematics—we draw a picture. In this way, we give a very different flavor
to the class scheduling environment. Let’s think of a diagram for the classes
in which the courses themselves are drawn as dots. We will draw a line
between two “courses” if and only if the courses cannot meet at the same
hour due to enrollment conflicts. For example, since courses C and S have
enrollments in common (Harns is in both classes), we have a line between
points C and S of the diagram (Figure 5.1).

Exercise 1: Here we complete the diagram in Figure 5.1. Label 6 points
C, S, D, N , G, O and draw a line segment between two of the points if and
only if the two corresponding classes have at least one student in common.

In doing exercise 1, you have drawn a diagram of the situation which is
known in mathematics as a graph. In graph theory, the dots (courses) are

72 CHAPTER 5. THE COLORING OF GRAPHS

S C

O

GN

D

Fig. 5.1:

called vertices or nodes of the graph, while the lines which you have drawn are
called lines or edges of the graph. We will deal only with finite graphs; that
is, graphs having only a finite number of vertices. Now we try a very strange-
seeming technique. We will say that we are choosing a proper coloring of the
graph using n colors (or just a proper n-coloring) if we can assign colors to
the vertices (or “paint” the vertices) from a “palette” of n different colors in
such a way that no two vertices which are joined by an edge are assigned the
same color. In this scheme, for instance, vertices C and S must be assigned
different colors.

It is appropriate to consider that the different time slots in the schedul-
ing problem can be associated with the different colors. How so? Well, we
certainly don’t want any pair of courses having students in common (vertices
joined by an edge) to be assigned the same time slot (the same color). Also,
we want each of the courses to have a time slot (each vertex should get a
color). The problem of scheduling courses is, in fact, the same as a graph col-
oring problem. A proper coloring of the graph corresponds to a satisfactory
pattern of meeting times for these six homeless courses.

Thus, we can answer the existence question for our course scheduling by
determining whether there is a proper 3-coloring of the graph you drew in
exercise 1. Also, the scheduling counting problem is answered if we can count
the number of proper 3-colorings of the graph.

Exercise 2: First try to find a proper coloring of the graph using a palette
of two colors. Call the colors A and B. Now suppose you have a palette
of three colors, {A,B,C}. Can you find a proper coloring? (This is the

5.2. INTRODUCTION TO THE MATHEMATICAL IDEAS 73

Existence Problem.)

Exercise 3: How many proper colorings (if any) can you find using two
colors? How many can you find with three colors? (This is the Counting
Problem.)

5.2.2 The general counting problem

In this section and the next, we will develop an algorithm for finding the
number of proper colorings of a graph using n colors. We will find a method
that is general enough to work, at least theoretically, with any finite graph.
We start with a very simple picture. Take the graph G1, shown below, in
which there are two nodes 1 and 2, and where 1 is joined to 2 with an edge.

1 • • 2

The Graph G1

Suppose there is just one color {red }. Clearly, there is no way to color
G1 with just one color, since 1 and 2 must have different colors. (If there
were no edge, we could do it with just one color. Simply color both vertices
red and be done with it!)

If we have two colors {red, blue}, then there are two ways to do it:

red 1 • • 2 blue

blue 1 • • 2 red

Exercise 4: Write down all the ways to color the graph G1 with three colors
{red, white, blue}. Write down the ways with four colors {A,B,C,D}.

Exercise 5: In how many ways (don’t write them down!) can you color G1
with x colors?

Now consider the graph G2 shown in Figure 5.2.

74 CHAPTER 5. THE COLORING OF GRAPHS

1

2

3

0.25

Fig. 5.2: The Graph G2

Exercise 6: Write down all the ways to color graph G2 with two colors {red,
white}. Write down all the ways with three colors {red, white, blue}.

Exercise 7: A finite graph in which no pairs of vertices are connected by
an edge is called an empty graph. Find a formula for the number of ways to
properly color an empty graph containing n vertices using x colors.

5.2.3 An algorithm for counting colorings

Consider a graph, which we will call G. For a given non-negative integer x,
we wish to count the number P (G;x) of possible proper colorings for G using
a palette of x colors. As we shall see below, this number can be expressed as
a polynomial in x. For this reason, we make the following definition.

Definition: P (G;x), the number of proper colorings of a graph G using x
colors, is the chromatic polynomial of G.

Look again, for example, at graph G2. If we have x colors available, we
can paint vertex 1 with any one of these colors. This done, we can now paint
vertex 2 using any of x − 1 colors. Hence these vertices together may be
colored in x(x−1) ways. Now vertex 3, being adjacent only to vertex 2, may
be colored also in x− 1 ways. Hence, P (G;x) = x(x− 1)2. It is tempting to
think that in this way we can step through any finite graph and determine
its chromatic polynomial!

Exercise 8: Try the technique just described also for graphs G3, G4, and
G5 of Figure 3. You will note that using this process on G3 and G4 is fairly
straightforward [yielding, for instance, x(x− 1)(x− 2) for G3]. On the other

5.2. INTRODUCTION TO THE MATHEMATICAL IDEAS 75

hand, G5 produces a significant problem. What is it? The lesson here points
to the need for a more general approach to calculating chromatic polynomials.

1

3 4 3 4

21

2 3

12

0.75

Fig. 5.3: Graphs G3,G4,G5

In thinking about an algorithm for counting colorings, we might focus
on what happens if we make a minor change in the graph. Let us take for
example the graph H in Figure 4 and determine how we would find P (H;x).
Notice that H is the same as the graph G2 in Figure 5.3.

2 1

3 4

e

Fig. 5.4: Graph H

To motivate the method, think of another counting problem. Suppose an
audience of 200 people have gathered for a concert (you know that number
because you’ve collected that many tickets), and you want to determine the
number of those present who did not buy refreshments at intermission. It
might be easiest to simply count those who did buy refreshments and subtract
that number from 200. Here we will do the same thing, except instead of
counting people, we are counting colorings. To find the number of proper
colorings, we will determine a number of colorings including both proper and
improper ones and then subtract off the number of improper colorings.

76 CHAPTER 5. THE COLORING OF GRAPHS

2 1
e

43

2 1

43

21

43

=

Edge "e" removed

"1" and "2" colored same or differently

Vertices "1" and "2" combined

Must be colored the same

[Graph H

[Graph [Graph H H]]

]

1 2

Fig. 5.5: One step in the algorithm

To see how the method works, look at Figure 5.5. We focus on the edge of
H labelled e. Each of the ways of properly coloring H must have the vertices
1 and 2 colored differently. After all, that’s what “proper” means.

• If edge e were not there (as in graph H1 of Figure 5.5, in which e has
been deleted from H), then vertices 1 and 2 could be colored either the
same or differently.

• On the other hand, if we were to combine vertices 1 and 2 into a single
vertex (as in graph H2 in Figure 5), then we would be assured that
they are colored with the same color!

Note that in forming the graph H2 from H by combining the vertices 1
and 2, we put an edge between the new vertex (1 = 2) and another vertex

5.2. INTRODUCTION TO THE MATHEMATICAL IDEAS 77

v in H2 if and only if there had previously been an edge in H going either
between 1 and v or between 2 and v.

Now to the counting. Let p and q be any two vertices of a graph H that
are connected by an edge. The number of ways to properly color graph H
will be the number of ways of doing so in which p and q are colored with
either the same or different colors (i.e., including both improper and proper
colorings) minus the number of ways of doing so in which they are necessarily
colored with the same color (i.e., colored improperly).

This difference is the number of proper colorings of H1 minus the number
of proper colorings of H2. Symbolically, we can write this:

P (H;x) = P (H1;x)− P (H2;x) (5.1)

Now, however, H1 and H2 can each be split up in the same manner, dividing
them into graphs H1,1, H1,2, and H2,1, H2,2, with a similar formula for each
of their numbers of colorings, P (H1;x) and P (H2;x). In other words, H1,1

is obtained from H1 by deleting an edge, and H1,2 is obtained from H1 by
identifying the two vertices connected by the deleted edge. Similarly for H2,1

and H2,2. This process continues until the new graphs that are formed have
no edges at all (i.e., they’re “empty” graphs) and so we cannot continue
removing edges. We carry this process out to completion with the graph in
Figure 5.6. using G2 of exercise 6

We know from exercise 7 that an empty graph, say with k vertices, can
be colored in xk ways. Hence, we can gather up all the empty graphs that are
formed and count the number of xk’s for each of the corresponding integers
k, subtracting off those that ought to be subtracted according to formula
(5.1). This procedure, published in 1946, is due to Birkhoff and Lewis. It is
called the Birkhoff-Lewis Reduction Algorithm.

After the algorithm is carried through, notice that the bottom row of
graphs consists of a line of only empty graphs (no edges). From this and from
your result of exercise 7, you can conclude that the chromatic polynomial of
G2 is

P (G2;x) = (x3 − x2)− (x2 − x)

or, in usual polynomial form:

78 CHAPTER 5. THE COLORING OF GRAPHS

1

2

3

1=2

3

2
3

1

1 3

2

1 3

1=2
1=2=3

2=3

e

Fig. 5.6: Decomposition of G2

P (G2;x) = x3 − 2x2 + x.

confirming our earlier calculation.

Notice that all graphs having a finite number of vertices eventually de-
compose into empty graphs under this process. Hence, the number of ways,
P (G;x), to properly color any graph using x colors is going to be a poly-
nomial expression in x having integral coefficients. This follows since, ulti-
mately, P (G;x) consists of sums and differences of expressions of the form
xk.

Exercise 9: Use the procedure outlined above to calculate the chromatic
polynomial of the graph G of Figures 5.4 and 5.5. [Answer: x4− 4x3 + 5x2−
2x—again, confirming earlier calculation.]

Exercise 10: Use the Birkhoff-Lewis Reduction Algorithm to find the chro-
matic polynomial P (G;x) for each of the graphs in Figure 5.7. (The last one
is messy; write small!)

5.2. INTRODUCTION TO THE MATHEMATICAL IDEAS 79

1 12

3 43

1

3 4

12

3 4

12

3 4

5

2

2

Fig. 5.7: Graphs for Exercise 10

The program chr poly is designed to perform exactly the algorithm that
you used in exercise 10. Your method involved doing the same thing over and
over to graphs derived from the original one. This type of process is called
“recursion”. A graph is decomposed into two graphs by a certain method,
and then the same procedure is applied to those graphs to yield more graphs,
repeating until the result consists entirely of empty graphs.

To run the program, go to the directory on which it is stored and type
C. Use chr poly to check your results for exercise 10. You will be asked to
enter the graph by first entering the number n of vertices and then answering
questions as to whether vertex i is connected to vertex j in the graph, for
i = 1, . . . , (n− 1); and j = (i+ 1), . . . , n. Now, the computer carries out the
recursive calculations until it reduces all of its graphs down to empty graphs,
counting these empty graphs as it finds them. Ultimately, the Birkhoff-
Lewis algorithm leads us to a count of the number of xk’s in the polynomial,
generating the coefficients of the chromatic polynomial.

Press a key, and the program displays the graph G that you entered and
the coefficients of the chromatic polynomial P (G;x) for this graph. The first
number displayed is the coefficient of xn, the next is the coefficient of xn−1,
and so forth, on down to the coefficient of x.

Note: The constant term of the chromatic polynomial is always 0. Why
does that make sense? What is the value of P (G;x) when x = 0? In the
chromatic polynomial, the coefficient of xk is 0 whenever k > n. Why is this
so?

The program also displays the value of the polynomial for several positive
integers x. For any x, this value is the number of ways to properly color G
with x colors. The value of x to which the arrow is pointing is the smallest

80 CHAPTER 5. THE COLORING OF GRAPHS

number of colors needed to color the graph. This is called the chromatic
number of G.

You can either press 0 and ENTER to quit, or you can type a positive
integer x and ENTER to see the value of P (G;x).

5.3 Questions to explore

Question 1: A graph with n vertices in which all distinct pairs of vertices
are connected with edges is called a complete graph on n vertices. What
are the chromatic numbers for the complete graphs on 2, 3, 4, 5, 6 vertices?
[Don’t use the computer here—think this one through and clearly describe
your reasoning.]

Question 2: What are the chromatic polynomials for the complete graphs
on n = 3, 4, 5, 6 vertices? [Again, think through how you would do this
without the computer. Then use chr poly to confirm your conjectures.

Question 3: Using your results from questions 1 and 2, can you find a
general formula for the chromatic polynomial for a complete graph on n
vertices?

Question 4: In how many ways can the graph of Figure 5.8 be colored with
a pallette of 44 colors? Use the program chr poly to answer this question.
Also, what are the chromatic number and the chromatic polynomial for the
graph?

Question 5: Use chr poly to find the chromatic polynomials for each
of the graphs in Figure 5.9. What are their chromatic numbers? For each
graph, can you find a coloring that will use just the chromatic number of
colors?

The first row of graphs used in Figure 5.9 are examples of what are called
“cycles” in graph theory. An n-cycle consists of a sequence of n distinct
vertices v1, v2, · · · , vn where the edges, and the only edges among them, are

5.3. QUESTIONS TO EXPLORE 81

12

3

4 5

6

Fig. 5.8: Graph for Question 4

v1 joined to v2, v2 to v3, and so on until, vn−1 is joined to vn, and vn is joined
to v1. We will define an n-path exactly as we did an n-cycle, except that vn
is not joined to v1. The second row of graphs in Figure 5.9 are examples of
paths on 4, 5, and 6 vertices, respectively.

Question 6: What is the chromatic number of an n-path? [Reason this
one out—and only then look at your results from the computer program.]

Question 7: What is the chromatic polynomial for an n-path? [Again,
reason and experiment. Your answers from reasoning and from the computer
program may have very different looking forms—but you should be able to
see that they are, in fact, the same.]

Question 8: Repeat question 6 using n-cycles rather than n-paths. In going
through the reasoning here, do you run into any snags along the way? What
are they?

Question 9: Repeat question 7 using n-cycles rather than n-paths. Again,
what are the snags on this question? You might look again at the Birkhoff-
Lewis algorithm for this answer. Be sure to compare your answer with the
computer’s output.

Question 10: Here’s a question to reason through. If the chromatic number
of a graph G is k (for some positive integer k), what factors do you know
must exist for the chromatic polynomial of G?

Question 11: If you have access to a computer algebra program, try fac-
toring the polynomials you have obtained using chr poly. What patterns
do you observe?

82 CHAPTER 5. THE COLORING OF GRAPHS

1

2 3

12

3 4

1

2

3 4

5

1
2

3 4

12
3

4 5

1

2

3

4

5

6

12

3

4 5

6

12

3

4

5

12

3 4

6

1

2

3

4
5

6

7
1

2

3

5

7

8

4 6

A B C

D

E

F

G

H

I

J K

Fig. 5.9: Graphs for Question 5

5.3. QUESTIONS TO EXPLORE 83

Question 12: We have seen already that the constant term for any chro-
matic polynomial is always 0 and that the degree of the polynomial is always
equal to the number of vertices of the graph G. This question deals with
making conjectures as to some of the other ways in which the chromatic poly-
nomial reflects properties of the graph itself. Look carefully at the results
of question 5, and also use chr poly to calculate chromatic polynomials of
some additional graphs of your own choosing. Can you describe any special
characteristics or patterns that you observe in the coefficients of P (G;x). Do
you see any pictorial characteristics of the graphs that are reflected in these
coefficients? This is a very interesting open-ended question that may involve
looking at a large number of graphs with the computer. Have fun with it!

References:

Birkhoff, G.D., and Lewis, D.C., Chromatic Polynomials, Trans. Am. Math.
Soc., 60 (1946), pp. 355-451.

Roberts, Fred S., Applied Combinatorics, Prentice Hall, Englewood Cliffs,
N.J., 1984.

84 CHAPTER 5. THE COLORING OF GRAPHS

Chapter 6

Randomized Response Surveys

6.1 Introduction

We all use data to estimate unknown probabilities, although often the process
is both informal and not something we pay attention to. This chapter intro-
duces elements of a mathematical theory defining properties that distinguish
a good estimate from a bad one. Although parts of this theory are more
than 300 years old, it remains an active area of research for mathematical
statisticians. In what follows, you will:

• Learn a method of estimation called randomized response, invented (a
mere 40 years ago!) to get reliable answers to sensitive questions;

• Use this method as a context for learning ways to evaluate estimation
methods;

• Investigate the relationship between how much data you have and how
good your estimate is; and

• Explore ways to improve on the standard method of estimation for
randomized response surveys.

85

86 CHAPTER 6. RANDOMIZED RESPONSE SURVEYS

6.2 Asking sensitive questions

Have you ever used illegal drugs? If someone were to ask you that, you
would be quite justified in regarding the question as intrusive. If a pollster
conducting a survey were to ask 1500 randomly selected college students,
chances are that some would refuse to answer, and that others would say
no, even if in fact they had used drugs. For these reasons, direct questions
are unlikely to get reliable information about drug use, or any of a number
of other sensitive questions. At the same time, good data are often needed
for informed discussion of public policies related to such sensitive issues as
abortion, sexually transmitted diseases, drug use, cheating on income taxes,
and so on.

One clever way to gather usable data while protecting the privacy of those
surveyed was invented by Stanley Warner and published in 1965. Warner’s
idea was to let each person decide using a chance device whether to answer
the question of interest or an innocuous decoy question. Here is a version of
Warner’s randomized response technique:

Imagine that a researcher wants to survey your class in order to find
out what fraction of you have ever used illegal drugs. “Have you ever used
illegal drugs?” will be his “real” question, and he’ll prepare another, “decoy”
question to go along with it: he’ll ask each of you to toss a penny, secretly, and
remember whether it lands Heads or Tails. “Did your penny land Heads?”
will be his decoy question. Now for the survey: he’ll ask each person to toss
a dime, also in secret, and use the result to choose which question to answer.

Results of secret dime toss Question to answer
HEADS REAL: Have you ever used illegal drugs?
TAILS DECOY: Did your penny land Heads?

As long as you don’t let the researcher see the results of your coin tosses,
and answer only “Yes” or “No,” he won’t know which question you are an-
swering, and so he won’t know whether “Yes” means that you have used
drugs, or that your penny landed Heads.

6.3. BACKGROUND 87

Class survey. This would be a good time to gather class data. First, the
class should choose a Yes/No question you’d like to know about. Also, you
need to make sure that everyone understands the rules for deciding whether
to answer “Yes” or “No.” Finally, everyone needs to feel that the method
does in fact protect his or her privacy. Once you have carried out the survey
and counted the total number of Yes answers, you can work at trying to
figure out what that number tells you. In order to study the relationship
between the number of Yes answers and the true make-up of the class, it will
be handy to have a little background.

6.3 Background

Intuitive definition. Suppose that a well-defined, repeatable chance pro-
cess generates a numerical quantity Y . The expected value of the quantity,
written EV(Y), is the limit of its average value, averaged over repetitions of
the chance process, as the number of repetitions increases without bound.

Example: In our case, the chance process corresponds to the
randomized response survey applied to your class using your cho-
sen question. This is a process that you can imagine repeating
a very large number of times, each time resulting in a different
value of Y = total number of Yes answers, depending on how
the coins land. If you repeat the survey 100 times, and compute
the average number of Yes answers, that average will be a good
estimate for the expected value of the number of Yes answers, or
EV(Y). If you repeat the survey 1000 times, the average will be
a better estimate; 10,000 repetitions would give an even better
estimate. In principle, you can imagine taking the limiting value
of the average as the number of repetitions goes to infinity; that
number is the expected value.
History: In classical probability theory, the chance process and
its expected value are defined abstractly, without reference to
any actual physical mechanism, and there is a theorem (called the
Weak Law of Large Numbers, and first proved by Jacob Bernoulli
in 1692) that the limiting long- run average equals the expected
value.

88 CHAPTER 6. RANDOMIZED RESPONSE SURVEYS

General principle for statistical thinking. To interpret the outcome of
a repeatable process, assume that the value you observe is equal (at least
approximately) to its expected value.

Rationale. For a great many chance mechanisms—but not all!—
outcomes near the expected value are more likely than outcomes
far from the expected value. The principle is most reliable when
the numerical outcome in question is the sum of a very large
number of very small chance-like components. (The basis for this
last statement is another theorem of classical probability theory,
called the Central Limit Theorem, due mainly to the work of De
Moivre in the 1720s and Laplace in the 1750s.)
Application. The principle will lead to a way to go from the
observed number of Yes responses to an estimate for the fraction
of true Yes people in the class: assume the observed number of
Yes answers equals the expected number of Yes answers, and solve
the resulting equation. The expected number of Yes answers will
be an expression involving the number of true Yes people, and
so solving will give you an expression for the number of true
Yes people in terms of the observed number of Yes answers. To
make this strategy work, you need to find an expression for the
expected number of Yes answers in terms of the number of true
Yes people. Stanley Warner did this using probability theory, but
an alternative is to use simulation, either physical simulation with
actual coins or by computer, to study the relationship between
the number of Yes answers to a randomized response survey and
the actual make-up of the group taking the survey.

6.4 Questions to explore

To explore the workings of the randomized response procedure, you will need
a computer program that can simulate a large number of repetitions of the
procedure. The first program for this purpose is ran1resp.

The program RAN1RESP

6.4. QUESTIONS TO EXPLORE 89

This program simulates a randomized response survey. When you run
the program, the computer will ask you to enter the following information.

The group:

• Group size: (for example, 20)

• Number of Yes in the group: (any number between 0 and the group
size)

The survey:

• Probability of the real question = chance the dime lands Heads: (0.5
for the first set of questions)

• Probability of a Yes answer to the decoy question = chance the penny
land Heads: (also 0.5 for the first set of questions)

The simulations:

• Number of replications: (Try 10 the first time you run the program, and
100 the second time, just to get a feel for how the program works. After
that, using 1000 replications will usually give good enough results. If
you find that 1000 replications takes too long, try 400 instead.)

• How often you want to see the results: (The first time, type 1 to see
the results after every simulation. The second time, you might type
10, to see the results after every 10th. After that, if you don’t want to
see any intermediate results, enter the number of replications.)

Because this program is so complex, we don’t include the pseudocode for
it. However, we have been generous with comments for the human reader in
the True BASIC code at the end of the chapter, so you should try to read
that and see whether you can follow the logic of the program. Before you try
to read the code, you should run the program so that you can more easily
interpret the various print statements.

Here are the names used for the variables in the program:

90 CHAPTER 6. RANDOMIZED RESPONSE SURVEYS

GrpSize = group size
YesInGrp = number of true Yes in the group
PrRealQ = probability of the real question

(= probability that the dime lands Heads)
PrYesDecoy = probability of Yes to the decoy question

(= probability that the penny lands Heads)
NRep = number of replications of the survey
PrntFreq = how often you see the results of the simulation
NYes = number of Yes answers to the survey

6.4.1 Finding estimates

Question 1: Finding an estimate. Fix the class size at 20. Let p stand for
the proportion of true Yes answers in the class:

p = YesInGrp/20.

Use RAN1RESP to study the relationship between the value of p and the
expected value (long run average) of the proportion Y/20 of Yes answers to
the survey:

Y/20 = NYes/20.

Your goal should be to find the graph of a function f for which

EV(Y/20) = f(p).

Once you have the graph, try to decide the equation of the function, and
then use the equation, together with the general principle of section 6.3, to
convert the observed number of Yes answers into an estimate of p:

Y/20 ≈ EV(Y/20)

by the general principle, and so

y/20 ≈ f(p),

which gives an estimate of

p̂ = f−1(Y/20).

6.4. QUESTIONS TO EXPLORE 91

Question 2: Generalization. Would you expect the function f to be the
same, or different, for a different class size N? With class size N the propor-
tion p of true Yes people and the proportion Y/N of people answering Yes
to the survey are given by

p =
YesInGrp

GrpSize
and

Y

N
=

NYes

GrpSize
.

Repeat Question 1, with enough different class sizes that you can find a
function g(p;N) such that

EV(Y/N) = g(p;N).

Then use the same logic as before to find the estimate p̂. Suggestion: Take
some time to plan your choices of N and p before you begin your simulations.
Then, as you accumulate results, think about what they tell you, and what
you still want to find out. Thoughtful choices for N and p can save you time.

Question 3: Theoretical justification. Find an informal proof for the result
in question 2. (The form of the output from the program ran1resp is
designed to help you think about this question. You might want to run the
program again, and look at the various relationships among the numbers of
Yes and No answers in the three two-way tables.) You will probably need
the following results for your argument.

• Expected values add:

EV(A+B) = EV(A) + EV(B)

• Expected number of Heads:

For a set of tosses with constant probability of getting Heads (denoted
Pr(Heads)),

EV(# Heads) = (# tosses)Pr(Heads)

6.4.2 Basic properties of the estimate

You will need a second program, ran2resp to answer the questions that
follow.

92 CHAPTER 6. RANDOMIZED RESPONSE SURVEYS

The program RAN2RESP

Overview. This program lets you define an estimate (based on the number
of Yes answers to a randomized response survey) and investigate various
features that measure how well it performs in a long sequence of repeated
uses. For example, you might define the estimate to be the one from your
answer to question 2 and define the feature of interest to be the absolute
value of the difference between the estimate and the true value. Running the
program would then give you the average value of this absolute difference,
averaged over repetitions of the survey.

Input. When you run the program, the computer will ask you for exactly
the same information as for RAN1RESP. However, before you can run the
program, you must first define the estimate you want to study, and the
numerical property whose average value you want to compute by simulation.

Defining the estimate. Here is how the current version of the program defines
the function Estimate:

FUNCTION Estimate (NYes, GrpSize, PrRealQ, PrYesDecoy)

Estimate = NYes / GrpSize

END FUNCTION

The line (or lines) between the first and last lines defines the estimate. As
it stands, the function computes the observed fraction of Yes answers (Y/N)
from the survey. (This is not a good estimate of p = the fraction of true Yes
people in the group.) You will need to replace the middle line with one or
more lines defining the estimate you want to study.

Defining the operating characteristic. The function OpChar(Est, True) de-
fines the particular measure of performance you want to study. (Such mea-
sures are known in statistics as operating characteristics.) The variable True
is the proportion p of true Yes people in the group:

True =
YesInGrp

GrpSize
= p

As written, the function simply returns the value of the estimate itself:

6.4. QUESTIONS TO EXPLORE 93

FUNCTION OpChar(Est, True)

LET OpChar = Est

END FUNCTION

Running the program will then give you the average value of the estimate,
averaged over repetitions of the survey. To study some other feature of the
estimate, you will need to replace the middle line of the function with one of
more lines of your own. The various definitions you will need to answer the
questions in this section are provided as required.

Question 4: Expected value of the estimate and bias.

The bias of an estimate is the difference between its expected
value and the true value to be estimated. For the randomized
response survey, the bias of the estimated proportion of true Yes
answers is thus

Bias = b(p,N) = EV(p̂)− p.

Recall that a good estimate of EV(p̂) is the average of the values
of p̂ obtained over a large number of repeats (say 1000). Notice
that because expected values add, EV(p̂) − p = EV(p̂ − p). We
say an estimate is unbiased if the bias is equal to zero for all
values of the true value being estimated.

The current version of the program ran2resp defines Estimate = NYes/GrpSize.
This would be a good choice if everyone answered the real question (truth-
fully) and no one answered the decoy. However, it is unlikely to happen
just like that, and NYes/GrpSize is not such a good estimate—among other
things, it is biased. Try to find the function b(p,N) that gives the bias in
terms of class size N and proportion p of true Yes people in the class. To
answer this question you will have to modify the definition of OpChar in
ran2resp, using the line

LET OpChar = Est - True

94 CHAPTER 6. RANDOMIZED RESPONSE SURVEYS

Question 5: With your results for Estimate = Y/N = NYes/GrpSize as a
standard for comparison, change the function Estimate in ran2resp so that
it uses your randomized response estimate from 6.4.1:

Estimate = f−1(Y/N).

Compare the results you get now with what you got for Estimate = Y/N .
Which estimate has greater bias?

Note: For the remaining questions in section 6.4.2, use your estimate from
question 5.

Question 6: Typical error size for the estimate. The bias measures the
difference between an estimate’s EV and the true value to be estimated. We
can also ask about the typical size of the difference between the estimate and
its expected value. Here are two ways to measure the typical size:

Mean Absolute Deviation:
MAD = average value of |estimate – EV(estimate)|.
Standard Deviation:
The SD is similar to the MAD, but instead of taking the absolute
value of the error, you take the square of the error, and then
after you take the average, you take the square root, to undo the
squaring:
SD =

√
average value of [estimate− EV (estimate)]2

Use RAN2RESP to investigate the relationship between the typical error
size of the estimate and the size N of the class, for various choices of p.

(a) Fix the class size N at 20, and regard MAD and SD as functions of p.
How would you describe these functional relationships?

(b) Suppose you had used a different class size. Would the functional rela-
tionships in (a) be different? Pick a different N , and gather data to see
if your guess is supported.

(c) Now fix the value of p at .5 and investigate MAD and SD as functions
of N .

6.4. QUESTIONS TO EXPLORE 95

Suggestion: Think in terms of graphing MAD or SD as a function
of N . It will turn out that SD is roughly equal to a power of N
times a quantity h(p) that doesn’t depend on N :

SD ≈ h(p)Nk

Thus, for fixed values of p, the SD on the left hand side depends
only on N , and is roughly of the form

SD ≈ (const1)Nconst2

Taking logarithms of both sides gives

log(SD) = log(const1) + (const2) logN.

If you regard log(SD) as y and logN as x, this is the equation of
a line:

y = intercept + (slope)x

The form of the equation suggests that if you use the simulation
program ran2resp to get values of SD for various choices of
N , and then plot number pairs (x, y) = (logN, log SD), the
resulting points should lie near a line with slope equal to const2
and intercept equal to log(const1).

Note that if you plan to plot SD versus log(N), it would be a
good strategy to choose values of N that are equally spaced on a
logarithmic scale, for example, 10, 20, 40, 80, 160.

Both MAD and SD are much simpler to compute for estimators that are
unbiased. (See question 4.) For unbiased estimators, the expected value of
the estimate equals the true value to be estimated, and so you can use the
true value in the definition of OpChar, instead of first having to find the
expected value. Here are the definitions to use for unbiased estimators:

For MAD,

LET OpChar = ABS (Est - True).

For SD,

96 CHAPTER 6. RANDOMIZED RESPONSE SURVEYS

LET OpChar = (Est - True)^2

to get the average value of the square of Est – True. Then take the square
root by hand to get the SD.

If your estimate is biased, you must run the program two times ((a)
and (b) below), first to find the expected value (long run average value) of
the estimate itself, and then a second time to find the absolute or squared
distance from the estimate to its expected value.

(a) Find the expected value of the estimate. To do this, run the program
using

LET OpChar = Est

and take the resulting average value of OpChar as the EV.

(b) Find the average value of the absolute or squared distance from the
estimate to its EV. First redefine OpChar using the numerical value of
the EV from (a) in place of True in the definitions above. For example,
suppose you find in (a) that the expected value for your estimate is 0.4.
For MAD,

LET OpChar = ABS(Est - .4)

and run the program to get the average value of this absolute difference.
For SD

LET OpChar = (Est - .4)^2

and run the program to find the average value of (Estimate −.4)2. Then
take the square root by hand.

6.4.3 Changing the chances

If you conduct a randomized response survey using fair coins, then for both
the penny and the dime the chance of heads is 1/2. If you use spinners instead
of coins, you can set the chances to whatever values you like (Figure 6.1).

6.4. QUESTIONS TO EXPLORE 97

Fig. 6.1: Spinner

The reason for using chances other than 1/2 for either the penny or the dime
is to improve the estimate for p, by reducing its SD, for example.

Changing Pr(Heads) for the penny

Question 7: Without doing any simulations, guess the general shape of
the functional relation between Pr(Heads) for the penny and the SD of the
estimate. (Assume that the dime is an ordinary fair coin.) How do you think
the estimator will behave if Pr(Heads) is near 0? near 1? Record your guess
in the form of a sketch of a graph of SD(θ) as a function of θ = Pr(Heads).

Question 8:. Use the methods of questions 1–3 from 6.4.1 to find a formula
for the estimate for p (the true fraction of Yes in the class) in terms of Y =
Yes answers to the survey, N = size of the class, and θ = Pr(Heads) for
the penny.

Question 9: Now hold N fixed at 20, hold p fixed at 0.3, and choose a range
of values for θ. For each choice of θ, use the simulation program to compute

98 CHAPTER 6. RANDOMIZED RESPONSE SURVEYS

the SD of the resulting estimate. Graph the set of number pairs (θ, SD), and
compare the pattern with your guess in question 1 above. Write a sentence
or two explaining why the relationship between Pr(Heads) and SD has the
shape that it does.

Changing Pr(Heads) for the dime

Question 10: Now assume the penny is once again an ordinary fair coin,
and let the chance of heads for the dime be some number other than 1/2.
Without doing any simulations, guess the relation between Pr(Heads) for
the dime and the SD of the estimate. Record your guess in the form of a
sketch of a graph of SD(φ) as a function of φ = Pr(Heads).

Question 11: Find a formula for the estimate for p in terms of Y = # Yes
answers to the survey, N = size of the class, and φ = Pr(Heads) for the
dime.

Question 12: Now hold N fixed at 20, hold p fixed at 0.3, and choose a
range of values for φ. For each choice of φ, use the simulation program to
compute the SD of the resulting estimate. Graph the set of number pairs (φ,
SD), and compare the pattern with your guess in question 1 above. Write a
sentence or two explaining why the relationship between Pr(Heads) and SD
has the shape that it does.

Question 13: Which has a greater effect on the SD of the estimate, Pr(Heads)
for the penny, or Pr(Heads) for the dime? If you were designing your own
randomized response survey, what values of θ = Pr(Heads) for the penny and
φ = Pr(Heads) for the dime would you use? Give reasons for your choices.

6.4.4 Other properties of estimates

In 10.4.2, you used expected values and standard deviations to evaluate the
randomized response estimator. This section begins by introducing two other
important features you can use to compare estimators—consistency (ques-
tion 14) and large sample normality (question 15). Both of these ideas are
prominent in the mathematical theory of statistics.

6.4. QUESTIONS TO EXPLORE 99

Next, question 16 deals with an unfortunate shortcoming of the random-
ized response estimator—it can give meaningless values as estimates. Ques-
tion 17 invites you to study the properties of an improved estimator. Finally,
question 18 introduces another important criterion, mean squared error, for
evaluating estimators.

Question 14: The chance of an error of given size. For fixed choice of
class size N , true proportion p, and small number ε, use ran2resp to find
a numerical value of Pr(|p̂ − p| > ε). Now carefully choose a collection of
values for N , p, and ε, and use these to investigate Pr(|p̂ − p| > ε) as a
function of N , p, and ε. You will have to modify OpChar again. This time,
for ε = .05, say, you would use

IF ABS(Estimate - True) > .05 THEN

LET OpChar = 1

ELSE

LET OpChar = 0

END IF

This function returns a value of 1 if the error is greater than .05 and 0
otherwise. The sum of the 1’s and 0’s will tell you the number of times the
error was more than .05, and the average (= Sum / NReps) will tell the
proportion of times.

Use the same strategy as in 10.4.2 with the SD: is there a power k for
which

Pr(|p̂− p| > ε) ≈ h(p, ε)Nk ?

An estimator is consistent if Pr(|p̂ − p| > ε) → 0 as N → ∞ for every
positive ε. Is the randomized response estimator consistent?

Question 15: Normal approximation. According to mathematical theory
(which says that as N →∞, deviations tend to follow a bell-shaped normal
curve) as the class size N increases, the limit of the chance that an estimate
is within 1 SD of its true value is approximately 0.68; the chance that it is
within 2 SDs of the true value is 0.95, and the chance that it is within 3 SDs
of the true value is 0.997.

100 CHAPTER 6. RANDOMIZED RESPONSE SURVEYS

The theory says the approximation works well if N is large enough, but
it doesn’t tell how large N needs to be. Before cheap computers, practicing
statisticians would often rely on approximations like this one, even though
they had no good way to check how well it worked.

Use different values of N and p, and your SDs from question 6, to answer
the following: How big does N have to be if you want

Pr(|p̂− p| ≤ 1 SD) ≈ .68

to be a good approximation for all choices of p?

Question 16: The chance of a meaningless value. Probabilities, by defini-
tion, must be non-negative and no greater than one. Values less than zero
or greater than one are meaningless. Nevertheless, it is possible to get ran-
domized response estimates that are less than zero or greater than one. For
given values of p and N , there is not a simple formula that gives an exact
answer for the chance of an estimate less than zero or greater than one, but
try to see how well you can describe the general patterns.

(a) For example, fix the class size (75 or 100 is a good choice) and study the
relationship between the chance of a meaningless value for the estimate
and the true value of p for the class. Are meaningless values more likely
when p is near 0? .5? 1? Sketch a graph of Pr(meaningless value)
versus p. What can you say about symmetry, concavity, etc.?

(b) Now hold p fixed and study the chance that the estimate is not in [0, 1],
i.e., Pr(p̂ < 0 or p̂ > 1), as a function of N . Here, as often, it can
help to start with extreme cases. What can you say if N = 1? N = 2?
What is the limit as N goes to infinity?

This time you want OpChar to return a value of 0 if the estimate is in
the interval [0, 1] and return a value of 1 otherwise. Then the average over
repetitions will give the proportion of times the value was outside the interval
of meaningful values. Here’s one way to do this:

LET OpChar = 0

IF (Est < 0) OR (Est > 1) THEN LET OpChar = 1

6.4. QUESTIONS TO EXPLORE 101

Question 17: An improved estimator? Here’s a simple-minded way to define
a new estimator that does not give meaningless values:

p̃ =

0 if p̂ < 0
p̂ if 0 ≤ p̂ ≤ 1
1 if p̂ > 1

For this question you will need to modify the definition of the estimate. Here
are all but one of the lines you will need.

Est = (this is the line you’ll need to supply, based on your

answer to question 2)

LET Estimate = Est

IF Est < 0 THEN

LET Estimate = 0

ELSE IF Est > 1 THEN

LET Estimate = 1

END IF

Use the modified program to study the following questions:

(a) What can you say about the bias of the new estimator? Is it unbiased for
all values of p? Or does the bias depend on p? Fix N , and use various
choices of p to investigate the shape of the bias function EV(p̃)− p.

(b) Now fix p, and study the bias EV(p̃) − p as N increases. Is the new
estimator consistent?

(c) What can you say about the SD of p̃ compared with the SD of p̂?

(d) How close can you come to finding the functional form of the SD of the
new estimator, as a function of the class size N and the true proportion
p?

Question 18: Mean square error.

102 CHAPTER 6. RANDOMIZED RESPONSE SURVEYS

The mean square error for an estimator is
MSE = EV([estimate – true value]2).
It can be proved that the MSE equals the square of the bias plus
the square of the SD.

(a) Use the MSE as a measure for comparing the randomized response es-
timator from question 2 with the estimator from question 17. Is one of the
two always better (smaller MSE) no matter what the values of N and p, or
is one better for some choices of N and p, and the other better for other
choices? Try to formulate as general a recommendation as you can about
which estimator to use.

(b) Can you find a third estimator whose MSE is smaller than that of either
of the estimators in part (a), for all choices of N and p?

6.5 Programs

Program: RAN1RESP

DIM A(3, 3, 3), B(3, 3, 3), ROW$(3)

RANDOMIZE

LET TrueYes = 1

LET TrueNo = 2

LET Real = 1

LET Decoy = 2

LET Yes = 1

LET No = 2

LET Total = 3

LET ROW$(1) = "REAL "

LET ROW$(2) = "DECOY "

LET ROW$(3) = "TOTAL "

LET C1$ = " T R U E Y E S T R U E N O W H O L E G R O U P"

LET C2$ = " YES | NO | TOTAL YES | NO | TOTAL YES | NO | TOTAL"

LET C3$ = "------+------+------ ------+------+------ ------+------+------"

6.5. PROGRAMS 103

!*****GET STARTING INFORMATION*****

CALL get_start_info(GrpSize,YesInGrp,PrRealQ,PrYesDecoy,NRep,PrntFreq)

!

!*****MAIN LOOP. EACH TIME THROUGH IS ONE REPETITION OF THE SURVEY*****

FOR Survey = 1 TO NRep

CLEAR

MAT A = zer(3,3,3)

! First survey the True Yes respondents

FOR Respondent = 1 TO YesInGrp

! * Toss the dime to decide which question:

IF RND < PrRealQ THEN

! * Dime lands Heads -- Answer Real question Yes:

LET A(TrueYes, Real, Yes) = A(TrueYes, Real, Yes) + 1

ELSE

! * Dime lands Tails -- Answer Decoy question: toss penny

IF RND < PrYesDecoy THEN

! * Penny lands Heads -- Yes to Decoy question:

LET A(TrueYes, Decoy, Yes) = A(TrueYes, Decoy, Yes) + 1

ELSE

! * Penny lands Tails -- No to Decoy question:

LET A(TrueYes, Decoy, No) = A(TrueYes, Decoy, No) + 1

END IF

END IF

NEXT Respondent

! Now survey the True No respondents

FOR Respondent = YesInGrp + 1 TO GrpSize

! * Toss the dime to decide which question:

IF RND < PrRealQ THEN

! * Dime lands Heads -- Answer Real question No:

LET A(TrueNo, Real, No) = A(TrueNo, Real, No) + 1

ELSE

! * Dime lands Tails -- Answer Decoy question: toss penny

IF RND < PrYesDecoy THEN

! * Penny lands Heads -- Yes to Decoy question:

LET A(TrueNo, Decoy, Yes) = A(TrueNo, Decoy, Yes) + 1

ELSE

! * Penny lands Tails -- No to Decoy question:

LET A(TrueNo, Decoy, No) = A(TrueNo, Decoy, No) + 1

104 CHAPTER 6. RANDOMIZED RESPONSE SURVEYS

END IF

END IF

NEXT Respondent

! Get marginal totals for component tables

FOR I = 1 TO 2

FOR J = 1 TO 2

LET A(Total, I, J) = A(TrueYes, I, J) + A(TrueNo, I, J)

NEXT J

NEXT I

FOR I = 1 TO 3

FOR J = 1 TO 2

LET A(I, J, Total) = A(I, J, 1) + A(I, J, 2)

LET A(I, Total, J) = A(I, 1, J) + A(I, 2, J)

NEXT J

LET A(I, Total, Total) = A(I, Total, 1) + A(I, Total, 2)

NEXT I

! Update cumulative totals

FOR I = 1 TO 3

FOR J = 1 TO 3

FOR K = 1 TO 3

LET B(I, J, K) = B(I, J, K) + A(I, J, K)

NEXT K

NEXT J

NEXT I

!*****Check to see whether to print*****

IF ABS(Survey - PrntFreq * INT(Survey / PrntFreq)) < .1 THEN

PRINT

PRINT USING "REPETITION NUMBER #####": Survey;

PRINT " of ";NRep

PRINT C1$

PRINT C2$

FOR J = 1 TO 3

PRINT C3$

PRINT ROW$(J);

FOR I = 1 TO 3

FOR K = 1 TO 2

PRINT USING " #### |": A(I, J, K);

NEXT K

6.5. PROGRAMS 105

PRINT USING " #### ": A(I, J, 3);

PRINT " ";

NEXT I

PRINT

NEXT J

PRINT

PRINT USING "AVERAGES BASED ON ##### REPETITIONS": Survey

PRINT C1$

PRINT C2$

FOR J = 1 TO 3

PRINT C3$

PRINT ROW$(J);

FOR I = 1 TO 3

FOR K = 1 TO 2

PRINT USING "####.#|": B(I, J, K) / Survey;

NEXT K

PRINT USING " ####.#": B(I, J, K) / Survey;

PRINT " ";

NEXT I

PRINT

NEXT J

PRINT "Press any key to continue";

GET KEY :zz

END IF

NEXT Survey

ASK CURSOR nr,nc

SET CURSOR nr ,1

PRINT "=="

PRINT "Initial conditions were: "

PRINT "Group Size: ";GrpSize; " Of these, ";YesInGrp;" were YES"

PRINT "Pr(H) for Dime: ";PrRealQ;" and Pr(H) for Penny: ";PrYesDecoy;

PRINT " Press ’Q’ to Quit";

DO until (Ucase$(chr$(dummy)) = "Q")

GET KEY: dummy

LOOP

END ! End of the program

SUB get_start_info(GrpSize,YesInGrp,PrRealQ,PrYesDecoy,

106 CHAPTER 6. RANDOMIZED RESPONSE SURVEYS

NRep,PrntFreq)

!*****GET STARTING INFORMATION*****

CLEAR

PRINT

PRINT

PRINT "RANDOMIZED RESPONSE SIMULATION"

PRINT

PRINT "First set up the group you will survey:"

INPUT prompt " What is the size of the group? ": GrpSize

INPUT prompt " How many of these are (true) Yes? ": YesInGrp

PRINT

PRINT "Now set up the survey:"

INPUT prompt"What is Pr(Real Question),

i.e. Pr(H) for the dime? ": PrRealQ

INPUT prompt"What is Pr(Yes|Decoy),

i.e., Pr(H) for the penny? ": PrYesDecoy

PRINT

PRINT "Now set up your simulation:"

INPUT prompt "How many times repeat the survey? ": NRep

PRINT "How often do you want to see the results"

INPUT prompt "(1=every time, 2=every other time, etc.)? ": PrntFreq

END SUB

6.5. PROGRAMS 107

Program: RAN2RESP

! User-defined functions

DEF Estimate (NYes, GrpSize, PrRealQ, PrYesDecoy)

LET Estimate = NYes / GrpSize

END DEF

DEF OpChar (Estimate, True)

LET OpChar = Estimate

END DEF

DEF Toss (PrHead)

IF (rnd <PrHead) THEN

LET Toss = 1

ELSE

LET Toss = 0

END IF

END DEF

RANDOMIZE

!*****GET STARTING INFORMATION*****

CALL get_start_info(GrpSize,YesInGrp,PrRealQ,PrYesDecoy,NRep,PrntFreq)

!*****MAIN LOOP. EACH TIME THROUGH IS ONE REPETITION OF THE SURVEY*****

LET Sum = 0

FOR Survey = 1 TO NRep

LET NYes = 0 !Initialize the number of Yes answers

! First survey the True Yes respondents

FOR Respondent = 1 TO YesInGrp

LET Dime = Toss(PrRealQ)

LET Penny = Toss(PrYesDecoy)

LET NYes = NYes + Dime + (1 - Dime) * Penny

NEXT Respondent

! Now survey the True No respondents

FOR Respondent = YesInGrp + 1 TO GrpSize

LET Dime = Toss(PrRealQ)

LET Penny = Toss(PrYesDecoy)

108 CHAPTER 6. RANDOMIZED RESPONSE SURVEYS

LET NYes = NYes + (1 - Dime) * Penny

NEXT Respondent

! Update the sum and print

LET Sum=Sum+OpChar(Estimate(NYes,GrpSize,PrRealQ,PrYesDecoy),

YesInGrp/GrpSize)

!*****Check to see whether to print*****

IF ABS(Survey - PrntFreq * INT(Survey / PrntFreq)) < .1 THEN

PRINT Survey;" of ";NRep; " trials. ";

PRINT "Result: ";Sum / Survey, " Press a key to continue"

GET KEY dummy ! stops here -- waits until a key is pressed

END IF

NEXT Survey

PRINT "=="

PRINT "Initial conditions were: "

PRINT "Group Size: ";GrpSize; " Of these, ";YesInGrp;" were YES"

PRINT "Pr(H) for Dime: ";PrRealQ;" and Pr(H) for Penny: ";PrYesDecoy

PRINT " Press ’Q’ to Quit";

DO until (Ucase$(chr$(dummy)) = "Q")

GET KEY: dummy

LOOP

END

SUB get_start_info(GrpSize,YesInGrp,PrRealQ,PrYesDecoy,NRep,PrntFreq)

!*****GET STARTING INFORMATION*****

CLEAR

PRINT

PRINT

PRINT "RANDOMIZED RESPONSE SIMULATION"

PRINT

PRINT "First set up the group you will survey:"

INPUT prompt "What is the size of the group? ": GrpSize

INPUT prompt "How many of these are (true) Yes? ": YesInGrp

PRINT

PRINT "Now set up the survey:"

INPUT prompt"What is Pr(Real Question),

i.e. Pr(H) for the dime? ": PrRealQ

INPUT prompt "What is Pr(Yes|Decoy),

6.5. PROGRAMS 109

i.e.,Pr(H) for the penny? ": PrYesDecoy

PRINT

PRINT "Now set up your simulation:"

INPUT prompt "How many times repeat the survey? ": NRep

PRINT "How often do you want to see the results"

INPUT prompt "(1=every time, 2=every other time, etc.)? ": PrntFreq

END SUB

110 CHAPTER 6. RANDOMIZED RESPONSE SURVEYS

Chapter 7

Polyhedra

7.1 Introduction

In this chapter you will look at (really look at—you’ll be making models)
three dimensional shapes of various kinds and investigate some of their prop-
erties. Unlike other chapters, this one makes no use of the computer. An-
swering the questions will require you to model, look and think.

A regular polygon is a plane figure, all of whose sides and interior angles
are equal. There exist regular polygons with any number of sides (greater
than 3) and any size.

Question 1: If a polygon has n sides, how many vertices does it have?

Question 2: Find a formula for the area of a polygon with n sides, each of
which has length 1.

A polyhedron is a solid whose all of whose faces are polygons. Thus, a
tetrahedron, a rectangular box, a pyramid, and a truncated pyramid are all
polyhedra. A regular polyhedron (or a regular solid) is one in which all faces
are congruent polygons, and the same number of polygons meet around each
vertex.

111

112 CHAPTER 7. POLYHEDRA

7.2 Questions and discussion

Question 3: Cut out a large supply of triangles, squares, pentagons, hexagons,
septagons, octagons,

(a) Can you make a regular solid out of (equilateral) triangles? If so, do it.
If not, why not?

(b) Can you make a regular solid out of squares? If so, do it. If not, why
not?

(c) Can you make a regular solid out of regular pentagons? If so, do it. If
not, why not?

(d) Can you make a regular solid out of regular hexagons? If so, do it. If
not, why not?

(e) Can you make a regular solid out of regular heptagons? If so, do it. If
not, why not?

(f) Can you make a regular solid out of regular octagons? If so, do it. If
not, why not?

(g) Guess the next question, and the next, and Answer them.

Question 4: The Greeks said that there were only five regular solids. Find
five different regular solids and describe them carefully. In particular, how
many faces does each have? How many vertices? How many edges? Were
the Greeks right? Proof or counterexample.

Question 5: Find the diameter of each of the regular solids if the edge
length is 1. What is the diameter of each of the regular solids if the faces
have area 1?

One could also look for the “simplest” polyhedra, with some suitable
notion of simple. For example, we might look for those with the smallest
number of vertices. Any polyhedron with just 4 vertices is a tetrahedron
(that is, it is bounded by four triangles).

7.2. QUESTIONS AND DISCUSSION 113

Question 6: Are there different ways to make polyhedra with 5 or 6 vertices?
Can you enumerate all polyhedra with at most seven vertices?

A polyhedron is said to be convex if, whenever two points lie in the in-
terior of the polyhedron, the segment joining them lies entirely inside the
polyhedron. Given any convex polyhedron centered at the origin, we can
create a new polyhedron, by “cutting off corners.” That is, given a vertex,
consider the line joining the center of the polyhedron to the vertex. Start-
ing at the vertex move a short distance inside the polyhedron and slice the
polyhedron perpendicular to this line. Do this at every vertex, moving in the
same short distance. Here, what we mean by a “short” distance is that no
two of the faces made by cutting off the corners share a vertex or edge.

Question 7: Describe the solids you get by cutting off the corners of the
regular solids. (i.e., How many faces? What types are they? How many
edges? How many vertices?) Is there a way to cut off the corners so the solid
looks most symmetrical? Is it possible to arrange that all the faces have area
1? Build at least one model.

Question 8: Describe the solids that you get when you cut off corners of
regular solids and let the new faces grow so they just touch one another.
What is the relation between the areas of the faces? Build at least one
model.

Question 9: Describe a soccer ball. Can you get a soccer ball from one of
the regular solids by cutting off corners?

The cover story of the September 1995 issue of the Notices of the Amer-
ican Mathematical Society is about a recently discovered molecule called a
Fullerene—or sometimes a buckyball1 (These molecules are named for Buck-
minster Fuller.) Quoting from the article by Bertram Kostant,

Prior to the discovery of the Fullerenes, around ten years ago,
the only known form of pure solid carbon was graphite and di-
amonds. These two forms are crystalline materials where the
bonds between the carbon atoms exhibit hexagonal and tetrahe-
dral structures, respectively. In neither of these two substances,

1“The Graph of the Truncated Icosahedron and the Last Letter of Galois,” by Bertram
Kostant, Notices of the AMS, Volume 42, Number 9, 1995, pages 959-968.

114 CHAPTER 7. POLYHEDRA

however, are there isolated molecules of pure carbon. On the
other hand, in Fullerene one finds for the first time a pure carbon
crystalline solid with well-defined carbon molecules. Mathe-
matically these molecules can be described as convex polyhedrons
where the faces are either hexagons or pentagons and each ver-
tex (carbon atom) is the endpoint of three edges (carbon bonds).
. . .. Fullerenes exhibit remarkable chemical and physical prop-
erties (e.g., superconductivity, ferromagnetism, tremendous sta-
bility) and have been the objects of a vast amount of research
throughout the world.

You can do a little research on buckyballs too.

Question 10: Buckyballs can be constructed by cutting off corners. De-
scribe one. (Hint: Kostant says, “Among the many Fullerene molecules the
most prominent and the most studied is C60. Can you describe C60?)

Question 11: Pick your favorite regular solid. Describe what happens when
you iterate the procedure of cutting off corners. Answer the question using
both the procedure in question 6 and that in question 7.

Question 12: On answering questions 1-10, you should have accumulated
lots of data regarding polygons with different numbers of edges, vertices, and
faces. Is there a relationship among these numbers? What is it? Is it possible
to specify the number of vertices and edges independently? What about the
number of faces and edges? Vertices and faces? Can you investigate this
question completely for, say, number of vertices (or edges, or faces) less than
eight? If you can, do it. If not, why not?

7.3 Additional topic

Can you figure out volumes in questions 7 and 8 under reasonable conditions?

Chapter 8

The p-adic Numbers

8.1 Introduction

This chapter will explore the properties of a new set of numbers called the
p-adic numbers. These numbers were first introduced by the German math-
ematician Kurt Hensel (1861-1941). For the rest of this chapter, let p be any
prime number, p ∈ {2, 3, 5, 7, 11, 13, ...}. For each distinct prime, there is a
new and different set of p-adic numbers. The 2-adics will be denoted by Q2,
the 3-adics by Q3, the 5-adics by Q5, and so on. Through this exploration of
numbers that are very exotic and unusual, you will come to a better under-
standing of the familiar real numbers. The real numbers are usually denoted
by R but in this chapter we will use the notation Q∞ for the real numbers to
emphasize what they have in common with the p-adics. The p-adic numbers
have become extremely important in modern number theory, but they are
still not well-known to all mathematicians, and they are certainly not a part
of the usual undergraduate curriculum. The study of these numbers is ex-
citing because it unites number theory, algebra, analysis, and topology, four
different areas of mathematics.

In learning about the p-adic numbers, you will:

• Learn to do arithmetic with these new numbers;

• See these new numbers as the analogues of the of the real numbers and
come to see the real numbers in a more abstract way; and

115

116 CHAPTER 8. THE P -ADIC NUMBERS

• Get a brief introduction to the topological idea of “nearness” and see
that convergence depends upon that idea.

Before we begin a formal introduction to the p-adic numbers, consider
the number 0 for a moment. We know that 0 is the only number that is
divisible by all other numbers. Suppose we say this by noting that 0 is the
only number that is divisible by any prime number p and all its prime powers
pe. We could then begin to think that a number was “close” to 0 if it was
divisible by a high power of a prime p. Of course, a number could be close
to 0 for one prime and not close for another (625 is “close” to 0 for 5 but
not for 3), so we should say that a number is 5-adically “close” to 0 if it is
highly divisible by 5. We could now say things like, “For the prime 5, 625 is
closer to 0 than 125 is.”

Going a bit further with this line of thought, we consider the equation
x − 47 = 0 and try to find x so that x − 47 is “close” to 0 for the prime 5.
We can find x so that x − 47 is divisible by 5. In the notation of modular
arithmetic, we want to solve x − 47 ≡ 0 mod 5. If you do not know any
modular arithmetic, this notation just means that we want to find a number
x between 0 and 4 such that x − 47 is divisible by 5. Quickly, we see that
x = 2 works. Next, we ask to find x so that x − 47 is divisible by 52 and
hence “closer” to 0. We want to solve the equation x − 47 ≡ 0 mod 52 and
find the number x between 0 and 24 such that x− 47 is divisible by 52. The
answer to this question is x = 22. Notice that if x−47 is divisible by 52 then
it is certainly divisible by 5. This observation explains why x = 22 = 2+4 ·5.
In other words, we extended the solution modulo 5 to a solution modulo 52

by adding a multiple of 5. If we ask to solve x − 47 ≡ 0 mod 53, we get
x = 47 = 2 + 4 · 5 + 1 · 52, which is nothing more than the expansion of 47
in powers of 5. If we go on to look at higher powers of 5, our solution for x
does not change. This expression for x is also called the 5-adic expansion of
47 in Q5; it is analogous to the decimal expansion of 47 in R.

If we try this same idea on x + 47 = 0, we get something even more
intriguing:

The solution to x+ 47 ≡ 0 mod 5 is x = 3.
The solution to x+ 47 ≡ 0 mod 52 is still x = 3 = 3 + 0 · 5.
The solution to x+ 47 ≡ 0 mod 53 is x = 78 = 3 + 0 · 5 + 3 · 52.

8.2. ABSOLUTE VALUES ON Q 117

(To find 78, we solved the equation (3 + 0 · 5 + a · 52) + 47 ≡
0 mod 52 for a. Try it!)

The solution to x+47 ≡ 0 mod 54 is x = 578 = 3+0·5+3·52+4·53.
The solution to x+ 47 ≡ 0 mod 5e is
x = 3 + 0 · 5 + 3 · 52 + 4 · 53 + ...+ 4 · 5e−1.

The infinite expression x = 3 + 0 · 5 + 3 · 52 + 4 · 53 + ... is the way that
−47 or the additive inverse of 47 gets represented in Q5. What do we get if
we add the 5-adic representation of 47 to that of −47? Is it 0? How do we
know it must be 0?

Notice that we could continue our process above by finding solutions to
equations like 2x− 3 = 0 (i.e. finding a representation for 2/3) or x2 + 1 (i.e.
finding

√
−1) that are “closer” and “closer” to 0 in this sense. Try it!

In this laboratory, you will begin to figure out what these representations
mean for your understanding of mathematics. How can the x above be
another way to represent −47? What do you gain by looking at numbers
this way? You already have a perfectly good way to represent them.

To begin, we need a more precise idea of what we mean by “closer and
closer to 0”.

8.2 Absolute values on Q

Let p stand for any fixed prime number p ∈ {2, 3, 5, 7, ...}. We can construct
the p-adic numbers Qp from the rational numbers Q = {a/b where a, b ∈
the integers Z}, in exactly the same way we construct the real numbers,

Q∞, from the rational numbers.

An absolute value on the rational numbers is a map, which we will call
| · |, from Q to [0,∞] which has the following properties for any x and y in
Q:

1. |x| ≥ 0, and |x| = 0 if and only if x = 0.

2. |x · y| = |x| · |y|.

3. |x+ y| ≤ |x|+ |y|. (The triangle inequality)

118 CHAPTER 8. THE P -ADIC NUMBERS

The German mathematician Ostrowski showed in 1935 that there are only
three different types of absolute values that can be put on the rational num-
bers. All others are equivalent 1 to one of these types. The three types are:
the trivial absolute value, the usual absolute value, and the p-adic absolute
value:

Definition 1. Let x be a rational number.

The trivial absolute value of x, denoted |x|0, is defined by:

|x|0 =

{
1 if x 6= 0
0 if x = 0.

The usual absolute value of x, denoted |x|∞, is defined by:

|x|∞ =

{
x if x ≥ 0
−x if x < 0.

The p-adic absolute value of x, denoted |x|p, is defined by:

|x|p =

{
1/pordp(x) if x 6= 0
0 if x = 0.

The quantity ordpx is called the order of x, and it is the highest power of
p dividing x. In other words, if x = pn · (α/β), where α and β are integers
that are not divisible by p, then n = ordpx. For example, if p = 5 then
|75|5 = |52 ·3|5 = 5−2, |34|5 = |50 ·34|5 = 1, |1

5
|5 = 5, and |10

75
|5 = |5−1 · 2

3
|5 = 5.

Exercise 1: Find the following absolute values:

|340|2, |340|3, |340|5, |340|17

|340

33
|2, |

340

33
|3, |

340

33
|5, |

340

33
|19.

Exercise 2: Let p = 5. Can you characterize (describe in a sentence) all the
rational numbers with 5-adic absolute value equal to 1? Give some examples

1Two absolute values are equivalent if the same sequences of rational numbers converge
for both of them.

8.2. ABSOLUTE VALUES ON Q 119

of these numbers. Make sure that some of your examples are positive, some
negative, and that some are fractions. Can you characterize all the rational
numbers with 5-adic absolute value equal to 1

5
? Give some examples of these

rational numbers. How are these sets related? Given an element of absolute
value 1, is there a corresponding element of absolute value 1/5? What are
the other possible values of the 5-adic absolute value? Can you describe the
sets of rational numbers that have each possible value? Can you show that
0 is the only rational number of 5-adic absolute value equal to 0?

Exercise 3: Show that each of these absolute values really satisfies the three
properties of an absolute value for all rational numbers.

To do this you may want to break the things you have to show into cases.
For example, with the trivial absolute value, you want to see what happens
when both x and y are 0, when one of them is 0 and the other is not, and
when both of them are not 0. With the usual absolute value you will need
to consider both when x and y are 0 or not and when they are positive or
negative. Additionally, in the p-adic case, you will need to consider when x
and y have the same number of p’s in their prime factorizations and when
they have different numbers of p’s.

We say that an absolute value on Q is non-Archimedean if in addition to
the three properties above it also satisfies the additional property (sometimes
called the ultrametric inequality)

3a. |x+ y| ≤ max(|x|, |y|) for all x and y ∈ Q.

Property 3a is a stronger property than the triangle inequality because if
|x + y| ≤ max(|x|, |y|), then it is certainly less then or equal to the sum of
both |x| and |y|. Absolute values which do not satisfy property 3a are called
Archimedean absolute values. 2

2Archimedes was a Greek mathematician who lived from 287-212 B.C. He first formu-
lated the following property, called the Archimedean property:

Given x, y ∈ Q, where x 6= 0,
there exists a positive integer n such that |nx| > |y|.

Archimedes formulated this property geometrically in terms of line segments. If this
property holds then it means that there are integers with arbitrarily large absolute values
and that if you add a positive integer to itself again and again the absolute value of the
sum will grow without bound.

120 CHAPTER 8. THE P -ADIC NUMBERS

Question 1: Classify each of the three absolute values in Definition 1 as
Archimedean or non-Archimedean.

Question 2: Let p = 5 and consider the rational number 2. Find |2|5,
|2 + 2|5, |2 + 2 + 2|5, |2 + 2 + 2 + 2|5, |2 + 2 + 2 + 2 + 2|5. What will happen
to the absolute values as one adds 2’s? Do the sums continue to decrease
uniformly in absolute value? Consider the rational number 2

25
. Find | 2

25
|5,

| 2
25

+ 2
25
|5, etc. Describe what happens as one adds more copies of 2

25
.

8.3 The Real numbers

We construct the real numbers and the p-adic numbers from the rational
numbers by defining them to be the limits of all Cauchy sequences of rational
numbers.

Definition 2. A sequence of rational numbers, {an} = {a1, a2, a3, ...}, is
said to be a real Cauchy sequence if given some ε > 0, there exists a positive
integer N such that for all i, j > N , |ai − aj|∞ < ε.

Thus, we define the real number π = 3.1415926... 3 to be the limit of the
sequence of rational numbers that starts off with

a1 = 3

3Do you know the trick for remembering the digits of pi? Use the following poem as a
mnemonic:

Now I know a charm unfailing,
An artful charm, for tasks availing
Intricate results entailing.
Not in too exacting mood,
Poetry is pretty good:
Try the talisman, let be
Adverse ingenuity.

The trick is that the number of letters in each successive word gives the successive digits.
Why does the poem stop here? The next digit of pi is 0. The current world champion
rememberer of digits of pi is Hiroyuki Goto, and he will soon be in the Guiness Book of
world records with 42,500 or so digits (the previous record was 40,000). He is currently
preparing for another assault on the record. He plans to do 100,000 digits. Remember
you read it here first.

8.3. THE REAL NUMBERS 121

a2 = 3.1 = 3 + 1 · 10−1

a3 = 3.14 = 3 + 1 · 10−1 + 4 · 10−2,

This is a Cauchy sequence because if we choose any small positive number
epsilon, say take ε = 10−4, then we see by our sequence above that we can take
N = 4 (or, indeed, any integer bigger than 4) and for members of the sequence
beyond the fourth member, i, j > 4, we will have that |ai − aj|∞ < ε.4

The decimal expansion for π is therefore really short-hand notation for the
sequence of rational numbers that converges to π.

Exercise 4: The square root of 2 has a decimal expansion which begins with
1.4142135.... This expansion represents the Cauchy sequences which converge
to
√

2; in particular it represents the sequence {1, 1.4, 1.41, 1.414, ...}. If
ε = .05, find the smallest big N such that |an − am|∞ < .05 = ε for n,m >
N . Next, if N = 4 what is the set of all ε such that |an − am|∞ < ε for
n,m > 4 = N?

In forming our Cauchy sequences above, the topological idea of an abso-
lute value was key. To construct the real numbers we use the usual absolute
value. There is a little ambiguity about the construction, as we have de-
scribed it, because there are many Cauchy sequences that converge to the
same real number. For example, the sequence {an} = {1, 1, 1, 1, ...} converges
to 1 but so does the sequence {bn} = {1.1, 1.01, 1.001, 1.0001, ...}.

We say that two real Cauchy sequences represent the same real number (or
are equivalent) if the sequence {an − bn}, which in this case is the sequence
{.1, .01, .001, .0001, ...}, converges to 0 (with respect to the usual absolute
value). Notice that the sequence {bn} above cannot be represented as a
decimal. We use the decimal expansion of a real number to stand for the class
of all Cauchy sequences that converge to the same real number. However,
even the decimal expansion of a real number is not unique. For example, the
sequence {cn} = {.9, .99, .999, .9999, ...}, which has decimal expansion .9999̄,
is another Cauchy sequence representing 1. To see that .9999̄ = 1, let’s sum
the infinite series for .9999̄.

.9999̄ = lim
n→∞

(
9

10
+

9

100
+ · · ·+ 9

10n

)
4For example, if i = 12 and j = 5, we have that a12 = 3.14159265358 and a5 = 3.1415

and we see that |a12 − a5|∞ = .00009265358 < 10−4.

122 CHAPTER 8. THE P -ADIC NUMBERS

= lim
n→∞

(
9

10

)
(1 + 10−1 + 10−2 + · · ·+ 10−(n−1)).

Since we know that the sum of the geometric series

1 + r + r2 + · · ·+ rn−1 =
1− rn

1− r

and that limn→∞ 10−n = 0, we see that

.9999̄ =

(
9

10

)
lim
n→∞

(
1− 10−n

1− 10−1

)
=

(
9

10

)(
1

1− 10−1

)
= 1.

Exercise 5: Sum a geometric series and find the rational number represented
by the following repeating decimals: .3̄1, 34.2̄3, 123.245̄.

Definition 3: The real numbers R are defined to be all equivalence classes
of real Cauchy sequences.

Definition 4: A field is complete with respect to an absolute value if every
Cauchy sequence of numbers in the field converges to a number in the field.

Since the real numbers are defined as limits of Cauchy sequences of ra-
tional numbers, it seems clear that the real numbers should form a complete
field (a field without holes). There should be no holes in the real num-
bers since every real number is a Cauchy sequence of rational numbers, and
between any two such Cauchy sequences there is always another one. For
example, between 3.14159111.... and π there are infinitely many other real
numbers: 3.141592, 3.1415915, 3.1415925555..., etc. Completeness actually
requires that all Cauchy sequences of real numbers (that is, Cauchy sequences
of Cauchy sequences) converge to real numbers. We will not prove that the
real numbers and the p-adic numbers are complete fields in this chapter, but
we just mention this fact to point out that completeness is not obvious.

8.4 The p-adic numbers

To construct the p-adic numbers, we use the p-adic absolute value in the
same way we used the usual absolute value above.

8.4. THE P -ADIC NUMBERS 123

A sequence of rational numbers, {an} = {a1, a2, a3, ...}, is said to be a
p-adic Cauchy sequence if given some ε > 0, there exists a positive integer N
such that for all i, j > N , |ai − aj|p < ε.

Two p-adic Cauchy sequences, {an} and {bn}, are said to be equivalent if
the sequence {an−bn} represents 0. The sequence of differences will represent
0 if limn→∞ |an−bn|p = 0. For example, if p = 5 then {an} = {1, 1, 1, ...} and
{bn} = {1 + 5, 1 + 52, 1 + 53, ...} are equivalent since |1− (1 + 5n)|5 = 1

5n
→ 0

as n→∞.

Definition 5. The field p-adic numbers Qp is defined to be all equivalence
classes of p-adic Cauchy sequences.

Now we know that any p-adic Cauchy sequence must converge to a p-adic
number. What do p-adic Cauchy sequences look like, and is there a p-adic
expansion for every p-adic Cauchy sequence that we can use to represent
the p-adic number just as we use the decimal expansion to represent a real
number?

First of all, repeating sequences of positive integers form p-adic Cauchy
sequences which converge to the repeated integer. For example, it is certainly
true that {406, 406, 406, ...} is a Cauchy sequence converging to 406 as |am−
an|p = 0 < ε for all ε and all m and n. If p = 5, we can find the 5-
adic expansion of 406 by writing the number out in powers of 5 as 406 =
1 + 1 · 5 + 1 · 52 + 3 · 53. To write down this expansion, we found that 53

was the largest power of 5 still less than or equal to 406. We subtracted off
as many of those as we could from 406, leaving us with 406 − 3 · 53 = 31.
We then continued the process by subtracting off multiples of 52 and 5 from
31 to get the 5-adic expansion. The expansion above will now be our short-
hand notation for the class of all Cauchy sequences equivalent to the Cauchy
sequence {1, 1 + 1 · 5, 1 + 1 · 5 + 1 · 52, 1 + ¯1 · 5 + 1 · 52 + 3 · 53, ...}. If p = 7
then 406 = 0 + 2 · 7 + 1 · 72 + 1 · 73 will be its 7-adic expansion.

Just as {1, .1, .01, .001, ...} (or limn→∞ 10−n) is another representation for
0 in the real numbers, {5, 5 + 4 · 5, 5 + 4 · 5 + 4 · 52, ...} = {5, 52, 53, ...} (or
limn→∞ 5n) is another representation for 0 in the 5-adics.

The p-adic expansion of an integer makes it very easy to determine its
p-adic absolute value because we can see clearly how many powers of p divide
it by looking at the first non-zero term of its p-adic expansion.

124 CHAPTER 8. THE P -ADIC NUMBERS

Exercise 6: For p = 5, find the p-adic expansions, the absolute values, and
the ordp of 700, 34,and 95. Do the same for p = 7.

If we go looking for other sequences of integers that are p-adic Cauchy
sequences, we see that any sequence of the following form must converge:

{αn} = {a0, a0 + a1 · p, a0 + a1 · p+ a2 · p2, ...}

where the aj (the coefficients of the powers of p) are integers between 0 and
p− 1. These sequences converge because for m < n

|αn − αm| = |αm+1 · pm+1 ++ αn · pn|p ≤ p−(m+1)

and this p−(m+1) can be made smaller than any given ε by taking m and n
large enough. We use the p-adic expansion a0 + a1 · p + a2 · p2 + a3 · p3 + ...
to stand for the Cauchy sequence above and abbreviate this expansion with
the notation a0.a1a2a3...p, just as we do with the decimal expansion for real
numbers.

For example, we see now that the sequence

{4, 19, 94, 469, ...} = {4, 4+3 ·5, 4+3 ·5+3 ·52, ...} = 4+3 ·5+3 ·52+ ... = 4.3̄5

converges in Q5.

It turns out that it is possible to prove that every p-adic Cauchy sequence
of positive integers is always equivalent to one of the above form with coef-
ficients aj between 0 and p− 1 [3, Theorem 1]. This fact means that we can
use the p-adic expansion to stand for the whole class of sequences converging
to the same p-adic number, just as we use the decimal expansion to stand
for the classes of sequences converging to any particular real number.

Definition 6: The p-adic integers Zp. The p-adic integers are defined to be
the limits of all Cauchy sequences represented by p-adic expansions of the
form

a0 + a1 · p+ a2 · p2 + a3 · p3 + ... = a0.a1a2a3...p

where the ai are ordinary integers such that 0 ≤ ai ≤ p−1. We let Zp denote
the set of all such expressions.

The absolute value of these p-adic integers will be exactly what it was for
the regular integers except that now the ordp will be the power of p dividing

8.4. THE P -ADIC NUMBERS 125

a number’s p-adic expansion. For example, |4+3 ·5+3 ·52 +|5 = |4.3̄5|5 =
1/50 = 1 and |3 · 5 + 3 · 52 +|5 = 1/5.

We can add and multiply p-adic integers in a very natural way. For
example, we add 4.131̄35 + 4.4̄5 in the 5-adics as follows:

1 · 5 1 · 52 1 · 53 1 · 54
4 +1 · 5 +3 · 52 +1 · 53 +3 · 54 + ...

+ 4 +4 · 5 +4 · 52 +4 · 53 +4 · 54 + ...
3 +1 · 5 +3 · 52 +1 · 53 +3 · 54 + ...

Notice that carrying is done to the right. Similarly, we multiply 4.131̄35×
4.4̄5 in the 5-adics from left to right as follows:

4 +1 · 5 +3 · 52 +1 · 53 +3 · 54 + ...
× 4 +4 · 5 +4 · 52 +4 · 53 +4 · 54 + ...

1 +2 · 5 +3 · 52 +1 · 53 +3 · 54 + ...
1 · 5 +2 · 52 +3 · 53 +1 · 54 + ...

1 · 52 +2 · 53 +3 · 54 + ...
1 · 53 +2 · 54 + ...

1 · 54 + ...
1 +3 · 5 +1 · 52 +3 · 53 +1 · 54 + ...

Exercise 7: Find the p-adic expansions of:

1. 2.42̄17 + 3.6̄7 in Z7 to four digits,

2. 2.42̄17 × 3.6̄7 in Z7 to four digits.

As we saw above, each positive integer has a p-adic expansion that is
just its representation base p. What about negative integers and what about
subtraction? If we want to find the 5-adic expansion of −1, we need to find
an expression of the form a0+a1 ·5+a2 ·52+ ... where 0 ≤ ai ≤ 4 for all i such
that 1+(a0+a1 ·5+a2 ·52+ ...) = 0. Notice that 1+(4+4 ·5+4 ·52+ ...) = 0,
hence 4 + 4 ·5 + 4 ·52 + ... is the 5-adic expansion of −1. We can also see that
4.4̄5 = −1 by summing a geometric series and using that limn→∞ 5n = 0 as
follows:

126 CHAPTER 8. THE P -ADIC NUMBERS

4 + 4 · 5 + 4 · 52 + ... = 4(1 + 5 + 52 + ...)

= lim
n→∞

4(1 + 5 + 52 + ...+ 5n−1)

= lim
n→∞

4(
1− 5n

1− 5
)

= 4(
1

1− 5
) = −1

Exercise 8: Find the 7-adic expansion of −1.

Question 3: Give a general form for the p-adic expansion of −1 for any
prime p.

Exercise 9: Find the 5-adic expansion of −2. You could subtract 2 from
0 = 5 + 4 · 5 + 4 · 52 + ... or multiply 2 times the expansion for −1. What is
the 7-adic expansion of −2? Find the 5-adic expansion for −405.

Question 4: Given the p-adic expansion of a positive integer, can you write
down a formula for the p-adic expansion of its negative?

Exercise 10: Use the geometric series to find the rational numbers with
7-adic expansions 2.42̄17 and 3.6̄7. By adding and multiplying these rational
numbers, check the calculations in Exercise 7.

However, there are more p-adic integers then there are rational integers,
for example, if p = 5 then 1/6 is also a 5-adic integer because it can be
written as 1.404̄05. (To check that this expansion represents 1/6 multiply it
by 6 = 1 + 1 · 5 to get 1.) However, not every rational number is a p-adic
integer. The number 36/5 = (1 + 2 · 5 + 1 · 52)/5 = 1 · 5−1 + 2 + 1 · 5 is not
a 5-adic integer; it is an element in Q5 of absolute value 5. It can be shown
that Qp, as we defined it in Definition 5 above, can alternatively be defined
as the field of fractions of Zp.

Now we need to know how to divide p-adic integers. For example, to find
the 5-adic expansion of the number 10/75, we factor out the highest power
of p in the numerator and in the denominator so that we need only divide

8.4. THE P -ADIC NUMBERS 127

two integers whose p-adic expansions begin with a non-zero first term. In
our example, we have

10

75
=

5 · 2
52 · 3

= 5−1
2

3

Long division proceeds as usual except that we carry 5’s to the right,
borrow 5’s from the right, and (to make borrowing from the right possible)
we write 2 as 2 + 5 · 5 + 4 · 52 + 4 · 53 + ... (remember 5 · 5 + 4 · 52 + ... = 0)
as follows:

4 +1 · 5 +3 · 52 +1 · 53 + ... = 4.1̄35

3 / 2 +5 · 5 +4 · 52 +4̄ · 53 + ...
− 2 +2 · 5

3 · 5 +4 · 52 +4̄ · 53 + ...
− 3 · 5

4 · 52 +4̄ · 53 + ...
− 4 · 52 +1 · 53

3 · 53 + 4 · 54 + 4̄ · 55 + ...

Hence, we can think of elements in Qp as:

α

β
=
a0 + a1p+ a2p

2 + ...

b0 + b1p+ b2p2 + ...
= p(ord(α)−ord(β))(c0 + c1 · p+ c2 · p2 + ...)

where α ∈ Zp, β ∈ Zp − {0} and c0 + c1 · p+ c2 · p2 + ... is an element in Zp

of absolute value 1. In other words, the first digit in the p-adic expansion
of c0 + c1 · p + c2 · p2 + ... is not 0. From the long division above, we have
that 10

75
= 5−1(2

3
) = 5−1(4.131̄35). We can of course check this expansion by

summing it.

4 + 1 · 5 + 3 · 52 + 1 · 53 + 3 · 54 + ... = 4 + 5(1 + 3 · 5)
∞∑
i=0

52i

= 4 + 5(16) lim
n→∞

1− 52(n+1)

1− 52
=

2

3

Now we have another way to define the field of p-adic numbers.

128 CHAPTER 8. THE P -ADIC NUMBERS

Definition 5′: The field of p-adic numbers, Qp is defined to be the the set
of limits of all p-adic Cauchy sequences represented by p-adic expansions of
the form

p−m(a0 + a1 · p+ a2 · p2 + ...),

where the ai are ordinary integers between 0 and p− 1.

Exercise 11: Find the p-adic expansions of:

• 4/3, 3/4, and −3/4 in Z5,

• 1/6 in Z7 and 1/10 in Z11. Why are these numbers all integers?

• What about 4/30 and 4/75 in Q5? Why are these numbers in Q5 and
not in Z5?

Question 5: If an element α in Qp has p-adic expansion

α = p−m(a0 + a1 · p+ a2 · p2 + ...),

what is the p-adic expansion of −α?

Exercise 12: Find the 7-adic expansion of
√

2 to 3 digits. Note that you
need to find a 7-adic number such that

(a0 + a1 · 7 + a2 · 72 + ...)2 = 2.

There will be two such 7-adic numbers
√

2 and −
√

2. These are not rational
numbers so the p-adic digits will not be repeating. Can you find the expansion
of
√

2 in Z5?

Exercise 13: Find the expansion of
√
−1 in Q5 to three digits. Can you

find the expansion of
√
−1 in Q7?

Question 6: Why do we know that
√

2 will be an integer in Q7 and
√
−1

will be an integer in Q5? For which p will
√

2 and/or
√
−1 be in Qp and

will they always be integers in these fields? Are these p-adic numbers really
different from the real numbers and from one another? The rational numbers
lie in all these fields.

We visualize the real numbers by picturing them arrayed along a number
line. The p-adic integers can be visualized as an infinite system of concentric
disks with 0 at the center of all the disks as follows:

8.4. THE P -ADIC NUMBERS 129

0

p3Zp

p2Zp

pZp

Zp

Fig. 8.1: Visualizing Zp

The elements in Zp are guaranteed to have no powers of p in their de-
nominators. The elements inside one disk but not inside the next form a
concentric system of annuli. Each annulus contains the elements in Zp which
are divisible by a fixed number of p’s.

An element lies in the outer annulus, that is it lies in Zp but not in pZp,
if it is guaranteed to be divisible by no powers of p. The a0 in the p-adic
expansion (a0 + a1 · p + a2 · p2 + ... + an · pn + ...) for such an element can
be any number between 1 and p − 1 but cannot be 0. The elements in this
annulus all have absolute value equal to 1 since they are not divisible by any
powers of p.

An element lies inside the second annulus, that is inside pZp but not inside
p2Zp, if it is guaranteed to be divisible by p but not divisible by p2. For such
an element, the a0 in its p-adic expansion equals 0 and the a1 cannot be 0.
The elements in this annulus all have absolute value equal to p−1 since they
are all divisible by exactly one power of p.

Therefore as we work our way into the center of the Zp disk, all the
elements in the same annulus have the same absolute value and the absolute

130 CHAPTER 8. THE P -ADIC NUMBERS

values are decreasing powers of p. If an element is in the disk pnZp but not
in pn+1Zp then its absolute value is p−n. The smallest element is 0 at the
center of all the disks with absolute value equal to 0. The visualization of
Zp (with absolute value thought of as height above 0) now looks something
like an infinite upside down wedding cake with 0 way down at the center.
The levels representing the widening annuli increase in height by powers of
p until the outermost annulus in Zp which is at height 1.

We use the notation pZp for the elements in the first disk since they all
look like p times a general element in the p-adic integers and have expansions
of the following form:

p(a0 + a1 · p+ ...+ an · pn + ...).

An element lies in the second disk if it is divisible by p2. Hence, we use p2Zp

to denote elements in that disk. Of course, all the elements which are in the
second disk are also included in the first disk. This inclusion explains the
concentric nature of the disks.

If p = 5, there are four types of elements in Z5 but not in 5Z5 and they
are:

• 1 + a1 · 5 + a2 · 52 + ..

• 2 + a1 · 5 + a2 · 52 + ..

• 3 + a1 · 5 + a2 · 52 + ..

• 4 + a1 · 5 + a2 · 52 + ...

We can denote these types of elements as 1 + 5Z5, 2 + 5Z5, 3 + 5Z5, and
4 + 5Z5 and think of them as smaller disks of the same size as 5Z5 centered
around their first coefficient and lying in the outer annulus. There are no
other elements in the annulus Z5 − 5Z5, so the space between the disks in
the annulus is empty. Of course, 5Z5 is just 0 + 5Z5. All of these 5 disks
have the same number of elements in them and so should be of the same size
or diameter.

If we consider the disk 1 + 5Z5, it is composed of an infinite system of
concentric disks with 1 at its center. We will use the notation 1 + 5nZ5

8.4. THE P -ADIC NUMBERS 131

4

.

.

.

.

.

.

.

.

.

4+5Z
5

0

0+5
2
Z

5

0+5Z
5

1

1+5
2
Z

5

3

3+5Z
5

2

2+5Z
5

0+Z
5

.
.

.

.

.

0+5
-1

Z
5

.

Fig. 8.2: Visualizing Z5

where n ≥ 1 to denote these concentric disks. Just as the disks about 0
were contained in one another, we have that 1 + 5Z5 contains 1 + 52Z5 which
contains 1 + 53Z5, and so on. In the outer annulus about 1, we have the
elements in 1 + 5Z5 but not in 1 + 0 · 5 + 52Z5. This annulus is completely
covered by four smaller disks of the same size as 1 + 52Z5. These four disks
contain the elements of the form

• 1 + 1 · 5 + 52Z5

• 1 + 2 · 5 + 52Z5

• 1 + 3 · 5 + 52Z5

• 1 + 4 · 5 + 52Z5.

132 CHAPTER 8. THE P -ADIC NUMBERS

Each of these disks is composed of more concentric disks centered about
1 + a1 · 5 of the form 1 + a1 · 5 + 5nZ5 where n ≥ 2. These disks get smaller
and smaller in size and they are the analogues to the open intervals on the
real number line.

Question 7: When describing the model for Zp, we thought of the disks of
the form α + pnZp as getting smaller and smaller as n gets bigger. Suppose
we have two elements in 1 + 5Z5, say 1 + 4 · 5 + 4 · 52 + 4 · 53 + ... and
1 + 3 · 5 + 3 · 52 + 3 · 53 + ..., what is the distance between them? What is the
distance between 1 + 4 · 5 + 4 · 52 + 4 · 53 + ... and 1 + 4 · 5 + 3 · 52 + 3 · 53 + ...?
What is the maximal distance between any two points in the disk 1 + 5Z5?
This maximal distance is the diameter of the disk. What is the diameter of
a disk centered at α of the form α+ pnZp where α is any fixed element in Zp

and n is a fixed positive integer?

Question 8: Complete the above picture of Z5 by filling in all the remaining
disks of the same size as 52Z5. Make a similar diagram for Z7. Describe the
diagram in general for Zp.

Question 9: Notice that the set of all points of distance less than or equal
to 1 away from 0, {x ∈ Qp : |x − 0|p ≤ 1}, is precisely all of Zp. Hence, we
say that Zp is the ball of radius 1 centered at 0. What is the set of all points
of distance less than or equal to 1 away from 1, {x ∈ Qp : |x−1|p ≤ 1}. This
set must be the the ball of radius 1 centered at 1. What about the ball of
radius 1 around 2? How can a ball have more than one center? Is the radius
of a p-adic ball the same as its diameter? Show using the properties of the
p-adic absolute value that any point in a ball is its center.

Glancing back at Figure 2, we should not think of 0 as the “center” of Z5

any longer (although it is convenient to put it in the center because of the
value of the absolute value in the annuli). Instead we should imagine the five
balls of the form a + 5Z5 floating in the Z5 circle so that any one of them
can be pushed into the center.

Question 10: In the picture of Z5 above, there is a disk outside and con-
taining Z5 denoted by 5−1Z5. Describe the elements inside that disk but not
inside Z5. What would their absolute values be?

Outside and containing the disk 5−1Z5, there is a disk which should be

8.5. REFERENCES 133

denoted by 5−2Z5. In this way, we see another ever-widening system of annuli
working their way out from Z5. The union of all the elements in these disks
is the entire field of 5-adic numbers, Q5.

8.5 References

George Bachman. Introduction to p-Adic Numbers and Valuation Theory.
Academic Press, 1964.

Fernando Q. Gouvêa. p-adic Numbers. Springer-Verlag, 1993.

Neal Koblitz. p-adic Numbers, p-adic Analysis, and Zeta-Functions.
Springer-Verlag, 1977.

Neal Koblitz. The p-adic approach to solutions of equations over finite
fields, Amer. Math. Monthly 87 (1980) no. 2, 115-118.

Kurt Mahler. p-adic Numbers and their Functions. Cambridge University
Press, 1973.

B. Mazur. On the passage from local to global in number theory, Bull.
Amer. Math. Soc. 29 no. 1, 14-50.

134 CHAPTER 8. THE P -ADIC NUMBERS

Chapter 9

Parametric Curve
Representation

9.1 Introduction

Look at figure 9.1 below. Its shape is pleasing partly because it is so nicely

(x(b),y(b))

(x(a),y(a))

x

y

(x(c),y(c))=(x(d),y(d))

Terminal point

Initial point

Point of intersection

Fig. 9.1: A sample curve

symmetric. In this chapter you will learn how to create pictures like this one

135

136 CHAPTER 9. PARAMETRIC CURVE REPRESENTATION

and determine—even predict—their symmetries. The ideas and language of
symmetry permeate mathematics, physics and chemistry. The pictures you
will draw are curves described by parametric functions. Curves and their
descriptions occur in many areas of mathematics and science. Such curves,
for example, can describe the motion of a particle or the trajectory of a
spaceship. Computer graphics uses parametric representations of curves in
fundamental ways. For example, they are used in drawing circles and ellipses,
or in creating “wire-frame” pictures of solid surfaces. You also see such
curves and surfaces in two and three dimensions in the study of multivariable
calculus.

Looking for patterns among the examples will be one of your goals in
this chapter. Carefully organizing your experimental findings will help you
identify patterns and the conditions that cause the patterns to occur.

9.2 Symmetries and closed curves

9.2.1 Definitions

Imagine that a bug crawls along an x-y plane and that we are to trace the
path that the bug takes. At any time t, the bug is at a point (x, y), depending
on t. As t changes, the coordinates of the bug’s position can be represented
as (x(t), y(t)), where x(t) and y(t) are functions. If the bug doesn’t hop
around, we can even believe that the functions are continuous. So we will
make our formal definition with this in mind.

A curve in the x-y plane can often be represented as a pair of continuous
functions

x = x(t), y = y(t)

over an interval a ≤ t ≤ b. As the value of t varies from a to b, the point
(x, y) traces out a curve in the plane. Technically, the continuous curve, or
just curve corresponding to the continuous functions x and y is the set of
ordered pairs

Φ = {(x(t), y(t)) : a ≤ t ≤ b}.

The set of points in the plane forming the curve is called its graph. The pair
of functions x(t) and y(t) are called parametric functions for the curve Φ,

9.2. SYMMETRIES AND CLOSED CURVES 137

the variable t is called a parameter, and we say that a curve described in this
way is represented parametrically by the two functions. Similar definitions
can describe curves parametrically in three or more dimensions.

We need language to describe the geometric features of the curve Φ.

• We call (x(a), y(a)) the initial point and (x(b), y(b)) the terminal point
of Φ.

(x(b),y(b))

(x(a),y(a))

x

y

(x(c),y(c))=(x(d),y(d))

Terminal point

Initial point

Point of intersection

Fig. 9.2: Initial, terminal and intersection points

• We say that the curve Φ intersects itself at c and d (c 6= d) provided
x(c) = x(d) and y(c) = y(d).

• The curve Φ is closed if (x(a), y(a)) = (x(b), y(b)), and it is a simple
closed curve if it is closed and does not intersect itself (except at the
initial and terminal points).

• The curve Φ, defined on the interval a ≤ t ≤ b, is called finitely inter-
secting (or fi) provided there are only a finite number of places where
Φ intersects itself.

Can you think of an example of a curve which is not finitely intersecting?

138 CHAPTER 9. PARAMETRIC CURVE REPRESENTATION

y

x x

y

Simple closed curve Finitely intersecting curve

Fig. 9.3: Two curve examples

Exercise 11: Look at the curve

x(t) = cos(t)

y(t) = sin(2t)

Using a calculator, make a table of values of x and y against t, for t =
0, 0.2, 0.4, 0.6, ..., 3.1, 3.2. On a piece of graph paper, plot the curve by first
plotting the points, (x, y), and then connecting the dots. From your table of
values, you should see reasonable bounds on x and y to use for the axes. Is
this curve closed? Is it a simple closed curve? Is it finitely intersecting?

9.2.2 Graphing with the computer

Plotting parametric functions by hand is very tedious, and the computer or
a graphing calculator can be extremely helpful. Below is the pseudocode
for a computer program, param1 that will draw parametric curves. At
the end of this chapter, working code for param1 is given in True BASIC,
and Mathcad. Alternatively, you may have access to a graphing utility or
a graphing calculator that will draw parametric curves very conveniently.
(See, for example, the program parametric function plotter in the
calcwin package.)

9.2. SYMMETRIES AND CLOSED CURVES 139

An important note here: Many plotting programs simply show you the
graph of the parametric functions rather than showing how the curve is traced
out as t varies. In both param1 and calcwin, you see a square cursor that
moves in the screen as the curve is generated. This feature makes it easier
to answer questions about the curves.

Program Outline: Param1

Input: The functions x and y, the endpoints a and b,

and the number n of line segments to plot

Output: Graph of x = x(t), y = y(t), for a <= t <= b,

with a square cursor tracing the curve

Define x(t) = cos(t) (A suggestion, used in 1st example.)

Define y(t) = sin(t) (Again, a suggestion.)

Set up graphics.

Set the graphics window to accomodate the graph.

do

Clear the Screen

Draw the coordinate axes.

n := 1000 ! Choose to suit your function.

a := 0 ! Choose to suit.

b := 2 * pi ! Choose to suit.

!***** ADD SPECIAL DATA HERE *****

t := a

h := (b - a)/n

FOR k := 1 TO n

Make the cursor centered at (x(t),y(t))

Plot line segment (x(t),y(t)) to x(t+h),y(t+h))

t := t + h.

NEXT k

loop until you are ready to exit the program.

Use param1, or calcwin, or any graphing program to plot the following
curves. You will need to change the functions x = x(t) and y = y(t) as
needed, and you should be sure that the interval [a, b] is properly specified.
Pay careful attention to the window over which you would appropriately
plot these functions; that is, what are the left, right, bottom, and top of the
pictures to best show the curves? [If you are using calcwin, you can click

140 CHAPTER 9. PARAMETRIC CURVE REPRESENTATION

on Auto-size Calc after pressing Plot.] In each case, describe the curve that
the equations generate. In the first two examples, describe which properties
of the functions produce the curves that you get. Can you do the same for
the third example?

Example 1:

x(t) = cos(t)

y(t) = sin(t) over 0 ≤ t ≤ 2π.

Example 2:

x(t) = t

y(t) = sin(t) over 0 ≤ t ≤ 2π.

Example 3:

x(t) = sin(t) + cos(t)

y(t) = sin(4t) + cos(2t) over 0 ≤ t ≤ 2π.

Exercise 12: What symmetries do you see in these three examples? What
does symmetry mean in this setting? Describe the symmetries you see as
precisely as you can. Think carefully about these questions before moving
on to the next section.

9.2.3 Symmetry in curves

Curves can be symmetric in various ways.

• We say two points P and Q are symmetric about a line ` if ` is the
perpendicular bisector of the line segment between P and Q, and in
this case we say that Q is symmetric to P across `. Then a curve Φ is
symmetric about a line ` if whenever a point P is on Φ, so is the point
Q symmetric to P across `. The line ` is called a mirror line for Φ.

9.2. SYMMETRIES AND CLOSED CURVES 141

• Similarly, we say two points P and Q are symmetric about a point M
if M bisects the line segment between P and Q; we also say that Q
is symmetric to P through M . Then a curve Φ is symmetric about a
point M if whenever a point P is on Φ, then so is the point Q that is
symmetric to P through M . In this case, the point M is called a center
of symmetry for Φ.

For future use, we modify our program param1 so we can use it in a
special situation—namely when the functions to be plotted are of the form

x(t) = sin(pt) + cos(qt) (9.1)

y(t) = sin(rt) + cos(st) (9.2)

where 0 ≤ t ≤ 2π, and p, q, r, s are all positive integers. In this lab, we
shall denote this system by the 4-tuple (p, q, r, s). Later we’ll modify our
requirement that p, q, r, and s be non-zero.

Program modification: Param2 (built from Param1).

The program param2 should be identical to param1 with the following
changes:

• The inputs should include the positive integers p, q, r, s

• The function definitions should now read:

Define x(t) = sin(p*t) + cos(q*t)

Define y(t) = sin(r*t) + cos(s*t)

Save this program under the name param2 and keep param1 for later use.
You can use param2 or calcwin or a different graphing utility to do the
next exercise.

Exercise 13: Describe the curves produced by the following parametric
functions: (A), (B), and (C). In each case, pay attention both to how the
curve is traced out and to what its final appearance is. Do you see any

142 CHAPTER 9. PARAMETRIC CURVE REPRESENTATION

relationships among these graphs? The curves are all defined over the interval
0 ≤ t ≤ 2π.

A. x = sin(t) + cos(2t)
y = sin(t) + cos(t)

B. x = sin(2t) + cos(4t)
y = sin(2t) + cos(2t)

C. x = sin(3t) + cos(2t)
y = sin(5t) + cos(4t)

Of course, these examples could be denoted, respectively, as (1, 2, 1, 1), (2, 4, 2, 2),
and (3, 2, 5, 4), as described under equations (10.1).

If we start with a set G of points in the plane, we can ask whether there
is an fi-closed curve Φ whose graph is the set G. This question gives rise to
the following definition.

• We say that a set G of points in the plane depicts an fi-closed curve if
there is a finitely intersecting closed curve Φ whose graph is G.

This definition is very specific, and it is possible for a curve to be closed
while its graph does not depict an fi-closed curve. What is an example that
illustrates this?

We can generalize the concept of a parametric representation of a curve
in the plane to that of a curve in k-dimensional space by using k continuous
functions rather than just 2. For example, if k = 3 we obtain a curve in
space that might describe, for instance, the trajectory of a space ship on a
mission to the moon.

9.3 Questions to explore

One way to get a closed curve is to choose functions x and y which are periodic
with a common period. Then the graph over an interval corresponding to
the the common period will surely be closed.

9.3. QUESTIONS TO EXPLORE 143

Exercise 14: Why is this true?

Question 13: Plot the function (p, q, r, s) = (2, 6, 2, 2); that is, plot

x(t) = sin(2t) + cos(6t)

y(t) = sin(2t) + cos(2t) over 0 ≤ t ≤ 2π.

Describe this curve in your own words, and answer the following questions
about it:

(a) Is this an fi-closed curve?

(b) Does this graph depict an fi-closed curve?

(c) Is it symmetric about the x-axis?

(d) Is it symmetric about the y-axis?

(e) Is it symmetric about the origin?

(f) Is it symmetric about any other point or line?

(g) Do you notice other characteristics of this curve?

Solution: Here is a description of what happens in this example.

This is a closed curve which is traversed twice (over [0, 2π]). Hence, as a
curve, it intersects itself infinitely many times: for instance, at any values
w and w + π, for any value w in [0, π]. As a graph, however, it depicts an
fi-closed curve that intersects itself five times. What are the functions x(t)
and y(t) that would form that fi-closed curve with the same graph?

144 CHAPTER 9. PARAMETRIC CURVE REPRESENTATION

Figure 9.4: The closed curve (2,6,2,2)

You might further organize your observations in a table like the one that
follows.

fi- Depicts Centers of
closed fi-closed mirror lines symmetry

(p, q, r, s) curve curve x-axis y-axis other origin other

(2,6,2,2) NO YES NO NO NO YES NO

Question 14: Repeat question 1 for the following parametrically-described
curves.

A. x = sin(4t) + cos(t) B. x = sin(4t) + cos(t)
y = sin(t) + cos(2t) y = sin(t) + cos(4t)

C. x = sin(t) + cos(t) D. x = sin(t) + cos(t)
y = sin(t) + cos(t) y = sin(t) + cos(5t)

E. x = sin(5t) + cos(2t) F. x = sin(7t) + cos(8t)
y = sin(3t) + cos(2t) y = sin(3t) + cos(2t)

G. x = sin(6t) + cos(3t) H. x = sin(12t) + cos(9t)
y = sin(4t) + cos(t) y = sin(3t) + cos(6t)

I. x = sin(5t) + cos(7t) J. x = sin(6t) + cos(8t)
y = sin(2t) + cos(6t) y = sin(5t) + cos(t)

For the curves (A) - (J), make a chart with the same headings we used in
question 1:

fi- Depicts Centers of
closed fi-closed mirror lines symmetry

(p, q, r, s) curve curve x-axis y-axis other origin other

A (4,1,1,2)
B (4,1,1,4)
C

9.4. POLAR REPRESENTATION OF CURVES 145

Look over your observations for the examples (A) – (J). Can you formulate
a conjecture as to what properties of these parametric functions enable you
to say yes to questions (a) - (f)? That is, what patterns do you see in the
integers p, q, r and s that yield these results? You can (and should) try
lots of other integers here to help yourself see regularities and refine your
conjectures. Try to prove that your conjectures are, in fact, true.

9.4 Polar representation of curves

Example: Look at the parametric curves (over the interval, 0 ≤ t ≤ 2π):

A. x(t) = (1 + 2 cos(t)) cos(t) B. x(t) = (1− 2 sin(t)) cos(t)
y(t) = (1 + 2 cos(t)) sin(t) y(t) = (1− 2 sin(t)) sin(t)

C. x(t) = cos(t)2

y(t) = cos(t) sin(t)

Use your parametric function plotter to plot these curves. and describe
them in terms of the properties you looked at in the previous section (using
questions (a) - (g)).

These parametric equations are examples of functions represented in polar
coordinates. That is

x(t) = r(t) cos(t) nonumber (9.3)

y(t) = r(t) sin(t) (9.4)

where r = r(t) is a function of the real variable t.

Question 15: Suppose that r and t are real numbers. Let x = r cos(t) and
y = r sin(t).

1. What is the distance from the point (x, y) to the origin?

2. What is the tangent of the angle that the line from the origin to (x, y)
makes with the positive x-axis? Hence, what is that angle?

146 CHAPTER 9. PARAMETRIC CURVE REPRESENTATION

The numbers r and t are called the polar coordinates of the point (x, y). (The
numbers x and y are the cartesian coordinates of the point.) A function
r = r(t) represented in this way (see equations (9.2)) is said to be in polar
coordinates.

You can, of course, graph these functions with the program you used in
the previous section. Or, you can use something more explicitly tailored for
them. A polar coordinate plotter polar is just the same as param1, except
the function r(t) must be specified, and then x(t) and y(t) are given specific
definitions.

Program modification: Polar (built from Param1). The program
polar should be identical to param1 except for the following changes:

• Before the function definitions of x(t) and y(t) insert the line

Define r(t) = 1 + 2 * cos(t) ! Change as desired

• Change the definitions of x(t) and y(t) to read

Define x(t) = r(t) * cos(t) ! Do not change

Define y(t) = r(t) * sin(t) ! Do not change

The program polar will handle polar coordinate functions nicely, as will
the polar function plotter in calcwin and other plotting routines.
Try example (A) above using a polar function plotter and verify that the
results are the same as those obtained using a parametric function plotter.
Now try examples (B) and (C) in polar coordinates and compare to your
earlier graphs.

Do some more experimentation by trying these additional polar curves.

D. r = 1 + 3 cos(2t) + 2 sin(3t) “Moose head curve”
E. r = 2 + 3 cos(2t) + 2 sin(3t)
F. r = cos(t)
G. r = cos(2t)
H. r = cos(3t)
I. r = cos(4t)
J. r = cos(5t)

9.5. ADDITIONAL IDEAS TO EXPLORE 147

Question 16: What pattern seems to emerge in the geometry of examples
(F) – (J)? Can you prove it? Find some more interesting curves in polar
coordinates. Write down their formulas and describe their main features.

9.4.1 Parameterized families of polar curves

We sometimes come upon families of functions that change as certain con-
ditions which define them change. For instance, the polar function r(t) =
1− 2 sin(t) is one member of a parameterized family of curves

r(t) = 1− c sin(t)

where c can be any real number. Be careful not to confuse the term “parame-
terized family” with “parametric equations” or “parametric representations”
for a single curve. For each fixed value of c, as we vary the parameter t, we
trace out a single curve. That describes the curves we have been studying in
the earlier sections. In this case, we have a family of many curves, one for
each value of the “parameter” c.

Question 17: Using a polar function plotter, describe the graphs of the
various functions you get for r(t) = 1 − c sin(t) by letting c vary over the
interval −1 ≤ c ≤ 1. For instance, let c = 1, c = .7, c = .5, c = .2, c = 0, c =
−.2, . . . , c = −1. Sketch each of these graphs and observe how each one is
related to the previous one and to the group as a whole. What symmetries
do you notice? What effect does increasing/decreasing the parameter c have
on the shape and size of the polar curve that the function traces?

Question 18: Repeat the previous exploration for values of c which are
greater than 1; try c = 2, c = 5, c = 20, c = 200. What do you observe?
Can you determine why this behavior occurs? What aspects of the function
become dominant and force this behavior as c increases? As c decreases?

9.5 Additional ideas to explore

There are many directions that the computer will allow you to explore using
the kinds of functions we have introduced here. For example:

148 CHAPTER 9. PARAMETRIC CURVE REPRESENTATION

1. If a parametrically expressed curve depicts an fi-closed curve yet is
not an fi-closed curve, find a parametrically defined function that is
fi-closed and has the same graph.

2. Why did some of the functions you studied draw a curve and then
proceed to trace over the same curve again and again? Under what
conditions does it draw a curve just once?

3. A parametric function of the form (p, q, q, p) (where p and q are positive
integers) represents a “rose” graph of several “petals.” Under what
condition does this trace the rose graph just once? If this condition is
satisfied, can you predict how many petals the rose will have? Can you
prove this?

4. Experiment with curves on intervals other than 0 ≤ t ≤ 2π.

5. Experiment with curves (p, q, r, s) where some of these integers are zero.
Which of the properties we have looked at still hold or do not hold? You
can look, for example, at “parity-like” questions where the mappings
are represented by 4-tuples of d’s, e’s, and 0’s (with d standing for
“odd” and e for “even”).

6. What happens if some of p, q, r, or s are not integers?

7. Experiment with parametrically defined functions that are completely
different from those we have looked at in this chapter.

9.6 Computer Programs

9.6.1 True BASIC program

Program: Param1

! Parametric function plotter with moving cursor

DEF x(t) = cos(t) ! Change as desired

DEF y(t) = sin(t) ! Change as desired

! Setting up window boundaries

LET left = -3 ! Change as desired

9.6. COMPUTER PROGRAMS 149

LET right = 3 ! Change as desired

LET bottom = -2.25 ! Change as desired

LET top = 2.25 ! Change as desired

SET WINDOW left,right,bottom,top

ASK MAX CURSOR mr,mc

LET boxwidth = (right-left)/80 !setting up square moving cursor

LET boxheight = (top-bottom)/60

BOX LINES -boxwidth,boxwidth,-boxheight,boxheight

BOX KEEP -boxwidth,boxwidth,-boxheight,boxheight in box$

SET COLOR "white"

DO

CLEAR

PLOT LINES : left,0;right,0

PLOT LINES : 0,bottom;0,top

PRINT "x = x(t) as entered"

PRINT "y = y(t) as entered"

!********* ADD SPECIAL DATA HERE **********

!Enter desired speed of plotting

SET CURSOR 1,30

INPUT prompt "Enter speed (f/s): ":sp$

LET spd = 200

IF sp$ = "s" then LET spd=5

LET a = 0 ! Change as desired

LET b = 2*pi ! Change as desired

LET n = 1000 ! Change as desired

LET t = a

LET h = (b - a) / n

SET COLOR "yellow"

FOR k = 1 to n

LET x1 = x(t)

LET y1 = y(t)

! Draw first box or erase a previous box

BOX SHOW box$ at x1-boxwidth,y1-boxheight using "XOR"

LET x2 = x(t+h)

LET y2 = y(t+h)

! Draw next box

BOX SHOW box$ at x2-boxwidth,y2-boxheight using "XOR"

IF mod(k,spd) = 0 then

150 CHAPTER 9. PARAMETRIC CURVE REPRESENTATION

PAUSE .0001

END IF

PLOT LINES :x1,y1 ; x2, y2

LET t = t+h

NEXT k

! Draw final box

BOX SHOW box$ at x2-boxwidth,y2-boxheight using "OR"

SET CURSOR mr,1

SET COLOR "white"

PRINT "Again (y/n):";

DO ! gets response to the question

GET KEY :again

LOOP until ((again=121) or (again=110)) ! until "y" or "n"

LOOP until (again<>121) ! end when you don’t press "y"

END

9.6. COMPUTER PROGRAMS 151

9.6.2 Mathcad programs

152 CHAPTER 9. PARAMETRIC CURVE REPRESENTATION

Chapter 10

Numerical Integration

10.1 Introduction

Many real phenomena are described in terms of differential equations, so
many questions of great interest involve integration. In this chapter you will
examine several numerical approaches to calculating integrals, some perhaps
familiar, and others new. The emphasis will be on examining the accuracy
and efficiency of different methods.

Recall that if a and b are definite numbers and f(x) is a “nice” function

on [a, b], then
∫ b
a
f(x) dx is a number, called the integral of f(x) over the

interval [a, b]. This number can be computed in several ways:

1. Directly from the definition, by taking a limit of approximating sums.

2. From the fundamental theorem of calculus, by seeking a function F (x)
whose derivative is f(x); the required number is then F (b)− F (a).

3. Using a method for solving differential equations to compute y(b) where
y(t) is the solution of the initial value problem y(a) = 0, dy/dt = f(t).

4. Hit and miss methods using cleverness and more advanced mathematics
(especially power series and complex variables).

153

154 CHAPTER 10. NUMERICAL INTEGRATION

If it is possible to evaluate an integral by hand, without a computer or cal-
culator, then it is usually done by method 2 or method 4. Since method
4 is anything but systematic, and there is no guarantee of success, most
calculus courses spend a lot of time on method 2 and systematic ways to
find antiderivatives. Unfortunately, most functions do not have antideriva-
tives given by nice formulas. To be more precise, most functions which can
be expressed as sums, products, quotients, powers and compositions of the
functions

f(x) = constant, x, sinx, cosx, ex, ln(x),

sin−1(x), cos−1(x), tan−1(x), . . .

do not have antiderivatives that can be so expressed. Explicit examples are

f(x) = e−x
2

, f(x) =
sinx

x
.

Methods based on 1) and 3) require a calculator or computer because of
the large number of arithmetic operations they involve, and they are called
numerical methods. In the next section, we explore a number of numerical
methods stemming from the definition of an integral. In section 5, we will
examine some methods based on randomizing.

10.2 Standard numerical methods

An approximate value (a Riemann sum) for
∫ b
a
f(x) dx, is determined by

dividing the interval [a, b] into n subintervals (call them [xi−1, xi], a = x0 <
x1 < . . . < xn = b) and choosing a sampling point in each subinterval (call
the sampling point in the ith subinterval ci). To compute the Riemann sum,
you add together the n products

f(ci)× length of ith subinterval

If we let hi = xi − xi−1, then the Riemann sum is

n∑
i=1

f(ci)hi.

10.2. STANDARD NUMERICAL METHODS 155

We can compute the value of the integral to as many decimal places as needed
by computing approximating sums in which the lengths of the subintervals
get smaller and smaller (and n gets larger and larger).

The standard numerical methods all depend on subdividing the interval
of integration [a, b] into n equal pieces, so hi = h = (b− a)/n for each i.

x

y

a b

y = f(x)

Fig. 10.1: [a, b] divided into equal subintervals

Exercise 1: Explain why, in terms of the notation above, we have xi = a+ih
where 0 ≤ i ≤ n. Using this notation, what is x0? What is xn?

We will consider five numerical methods. Each corresponds to different
choices to approximate the curve y = f(x) up at the top of each “strip.”

Rectangle Trapezoid Parabola
(Riemann sum) (Trapezoidal sum) (Simpson’s Rule)

The first three methods involve Riemann sums. They approximate the curve
by a horizontal line of height f(ci), producing a rectangular strip. In the
first case, ci = xi−1, the left endpoint; in the second, ci = xi, the right
endpoint; and in the third, ci = (xi−1 + xi)/2, the midpoint of the subinter-
val. The fourth method approximates the graph by the line segment from
(xi−1, f(xi−1)) to xi, f(xi)), forming a trapezoidal strip. The last method,
called Simpson’s rule, requires an even number of subintervals, and then each
pair of adjacent subintervals, [xi−1, xi+1] is topped by the parabola passing

156 CHAPTER 10. NUMERICAL INTEGRATION

(Riemann Sum) (Trapezoidal Sum)

Parabola (dotted)

(Simpson’s Rule)

Rectangle Trapezoid

Fig. 10.2: Three approximations

through the three points (xi−1, f(xi−1)), (xi, f(xi)) and (xi+1, f(xi+1)). (To
avoid overlaps, we take i = 1, 3, . . . , n− 1.)

If we use the left endpoints, the approximation we obtain is

Ln =
n−1∑
i=0

f(xi)h.

Exercise 2: Explain why the corresponding sum for the right endpoint
approximation is

Rn =
n∑
i=1

f(xi)h.

If Sn =
∑n

i=0 f(xi)h, explain why Ln = Sn − f(b)h and Rn = Sn − f(a)h.
What is the sum Mn for the midpoint approximation?

Recall that the formula for the area of a trapezoid of height h with bases
b1 and b2 is [b1 + b2]h/2.

Exercise 3: Explain why the formula for the trapezoidal approximation is

Tn =
n−1∑
i=0

[f(xi) + f(xi+1)]h/2,

10.2. STANDARD NUMERICAL METHODS 157

and explain why Tn is the average of Ln and Rn.

Exercise 4: For distinct numbers a, b, and c, a unique parabola passes
through the three points (a,A), (b, B) and (c, C). Verify that the parabola
whose equation is y = q(x) for

q(x) = A
(x− b)(x− c)
(a− b)(a− c)

+B
(x− a)(x− c)
(b− a)(b− c)

+ C
(x− a)(x− b)
(c− a)(c− b)

passes through these points. (How do you know that the graph of y = q(x)
actually is a parabola?)

Exercise 5: Consider the special case where a = −h, A = f(a); b = 0,
B = f(b), and c = h, C = f(c). Draw a picture to illustrate this case. Use
calculus to find a formula (in terms of h, f(−h), f(0) and f(h)) for the area
under the graph of y = q(x) on the interval [−h, h].

Exercise 6: For Simpson’s rule we approximate the curve y = f(x) on
an adjacent pair of subintervals by a parabola passing through the three
consecutive points

(xi−1, f(xi−1)), (xi, f(xi)), (xi+1, f(xi+1))

What is the formula for q(x) in this case? Use your answers to exercises 5
and 6 to explain why the area under the graph of q(x) between xi−1 and xi+1

is
1

3
{f(xi−1) + 4f(xi) + f(xi+1)}h.

Exercise 7: Assume n is even. Explain why the approximating sum for
Simpson’s rule is

Sn =
1

3
{f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + 2f(x4) + . . .

+2f(xn−2) + 4f(xn−1) + f(xn)}h.

Note: In the next section you will see that there is another way to think of
Simpson’s rule by relating it to the midpoint and trapezoidal approximations.

158 CHAPTER 10. NUMERICAL INTEGRATION

10.3 Automating the standard methods

It is not hard to automate the calculation of the five approximating sums
in the previous section. Here is pseudocode for a program integral that
calculates all five. Working code in True BASIC and Mathcad is at the end of
this chapter. In order to make the programs simpler, we will choose n = 2m
to be an even integer. For the first four approximations, we will think of our
subintervals as a = x0 < x2 < x4 < . . . < x2m = b. Then the midpoints of
the subintervals are x1, x3, . . . , x2m−1. Thus, the program will calculate the
approximating sums Lm, Rm, Mm, Tm and Sn.

Program outline: Integral

Input: a function f, an interval [a,b], and an integer m > 0

Output: the value of the left endpoint, right endpoint, mid-

point, trapezoidal and Simpson’s approximating sums:

L(m), R(m), M(m), T(m), S(2*m)

n: = 2 * m

! Calculate an array, Fval(i), of function values, i = 0 to n.

h := (b-a)/n !Length of (half) a subinterval

x := a !Initialize x

FOR i = 0 TO n

Fval(i) = f(x)

x := x + h

NEXT i

! Calculate "master sum" for left, right, and trap sums

sum := 0

FOR i = 0 TO m

sum := sum + Fval(2 * i)

NEXT i

Left := [sum - Fval(n)] * (2 * h)

Right := [sum - Fval(0)] * (2 * h)

Trap := [Left + Right]/2

10.3. AUTOMATING THE STANDARD METHODS 159

! Calculate midpoint sum

sum := 0

FOR i = 1 TO m

sum := sum + Fval(2 * i - 1)

NEXT i

Mid := sum * (2 * h)

! Calculate Simpson’s rule sum

E := 0 ! Sum the terms with even subscripts

IF m > 1 THEN

FOR i = 1 TO m - 1

E := E + Fval (2 * i)

NEXT i

U := 0 ! Sum the terms with odd subscripts

FOR i = 1 TO m

U := U + Fval(2 * i - 1)

NEXT i

Simp := [Fval(0) + 4 * U + 2 * E + Fval(n)] * h/3

PRINT Left, Right, Mid, Trap, Simp

For some of the questions in the next section, you will use the program
integral to compare the accuaracy of the different methods in the case
when the actual value of the integral is known by the fundamental theorem.
In these cases, what is of interest is not the value of the approximating sums,
but the difference between each approximation and the actual value—the
error in the approximation. For this task, a slight variant, integral-2, is
useful; it merely adds the actual value of the integral as an input at the start
and prints out the differences between the actual and estimated values.

Program outline: Integral-2

Input: a function f, an interval [a,b], an integer m, and the

actual value A of the integral

Output: the differences between the left endpoint, right endpoint,

midpoint, trapezoidal and Simpson’s approximating sums and

the actual value:

160 CHAPTER 10. NUMERICAL INTEGRATION

L(m) - A, R(m) - A, M(m) - A, T(m) - A, S(2*m) - A

.

.

.

PRINT Left - Act, Right - Act, Mid - Act, Trap - Act, Simp - Act

Exercise 8: Explain why the program integral does what it is supposed
to do.

10.4 Questions to explore

Question 1: Compare the accuracy of the five methods just given by ap-
plying them to some examples where you know the answer. In each case,
calculate the approximation and the error = approximation – actual value.

(a) f(x) = cos x, [a, b] = [0, π
2
].

(b) f(x) = 2x+ 1, [a, b] = [0, 1].

(c) f(x) = 4− x2, [a, b] = [0, 2].

(d) f(x) = 5x3 − 6x2 + .3x, [a, b] = [−1, 3].

Compare the size of the error for each of the methods for the same choice of
n = 2m, and also observe the effect of doubling n on the size of the error for
each method. You might start with n = 2, 4, 8, 16, It is sometimes helpful
to keep track of the improvement in your approximations by computing the
ratio Error(n)/Error(2n) for the various methods, where Error(n) means the
error in the approximating sum when you use n subintervals.

Question 2: If you choose f(x) =
√
|1− x2|, [a, b] = [−1, 1], you will obtain

an approximation to π
2

(Why?). If you were to double m each time, how large
a value of m, for each method, do you need to obtain π accurate to 2,3,4 etc.
decimal places? Also try m = 10, 100, 1000. [Note: the absolute value bars

10.4. QUESTIONS TO EXPLORE 161

are needed because for large m, round-off error can produce negative values
of 1− x2 for x near ±1.]

Question 3: Choose other examples of functions and intervals on which to
apply the five methods. (The integral

∫ 1

0
dx/(1 + x2) is quite interesting!)

Question 4: How do the midpoint and trapezoidal approximations com-
pare? (Are you surprised?) To get some insight into this comparison, sketch
a typical “strip” with its midpoint rectangle, and create a trapezoid we’ll
call the midpoint trapezoid. Do this by rotating the horizontal line through
(midpoint, f(midpoint)) about this point until it is tangent to the graph of
y = f(x). How do the areas of the midpoint rectangle and the midpoint
trapezoid compare?

Now, draw some pictures comparing the midpoint trapezoid with the trape-
zoid used in the trapezoidal approximation. Try comparing the standard and
midpoint trapezoids for several, variously shaped, graphs. Which trapezoid
looks like its area is closer to the area under the curve? What do your pic-
tures suggest about the relationship between the signs of the errors for the
midpoint and trapezoidal approximations?

Question 5: Your results in questions 1–4 should suggest that the errors in
the midpoint and trapezoidal approximations have opposite signs, and that
the error in the midpoint sum is about half that in the trapezoidal sum.
Based on this observation, explain why forming the weighted sum

Wm =
1

3
[2×Mm + 1× Tm]

should give a very good approximation to the integral. Use your results from
questions 1–3 to calculate some values of Wm for m = 1, 2, 4, What do
you get? How do your results compare to the results S2m using Simpson’s
rule?

Question 6: Go back to the special case in exercise 5, where you looked
at the graph of y = f(x) on the interval [−h, h]. Calculate M1, T1, and W1

on this interval, and calculate S2 on the pair of adjacent subintervals [−h, 0]
and [0, h]. Your answers will all be in terms of h and f(−h), f(0) and f(h).
What do you find?

162 CHAPTER 10. NUMERICAL INTEGRATION

Question 7: Use your answers to questions 5 and 6 to guess a formula for
S2m in terms of Mm and Tm. Can you prove your formula is correct?

Question 8: If f(x) is linear, what do you notice about the midpoint,
trapezoidal and Simpson’s rule approximations to the integral of f? If f(x)
is quadratic (f(x) = ax2 + bx+ c, some a, b, c) what do you notice about the
Simpson’s rule approximation? Can you explain these observations?

Question 9: Now try some cubic polynomials f(x) = ax3 + bx2 + cx + d
using Simpson’s rule. What do you notice? To see what’s going on, compute
algebraically both the Simpson’s rule approximation and the actual integral
in the special case of exercise 5 (n = 2 and working on the interval [−h, h])
for f(x) = ax3 + bx2 + cx+ d.

Question 10: Now choose a function we don’t know how to integrate, say
f(x) = e−x

2
, on [a, b] = [−1, 1]. Compare the approximations to this integral

produced by the various methods.

Question 11: What about f(x) = sinx/x on [a, b] = [1, 2]? or on [a, b] =
[0, 1]? (There are problems in the latter case near x = 0. What can you do
to avoid them?).

Integrals describing arc length occur naturally, but we can seldom evaluate
them analytically, so they are natural candidates for our numerical methods.
The “circumference” of an ellipse is such an integral.

Consider the ellipse x = a cos t, y = b sin t, for 0 ≤ t ≤ 2π. (Notice that
x2/a2 + y2/b2 = 1). Assume that the major axis of the ellipse is horizontal,
so that b ≤ a. The speed of the parametrization is√

(x′(t))2 + (y′(t))2) =
√
a2 sin2 t+ b2 cos2 t,

and the arc length L = distance travelled =
∫ 2π

0
speed dt, so

L =

∫ 2π

0

(a2 sin2 t+ b2 cos2 t)
1
2 dt

= 4

∫ π
2

0

(a2 sin2 t+ b2 cos2 t)
1
2 dt

= 4a

∫ π
2

0

(1− (1− b2

a2
) cos2 t)

1
2 dt.

10.5. MONTE CARLO METHODS 163

(Be sure you can account for each step in the calculation above.)

It is conventional to give the name k2 = (1− b2/a2) to the expression ap-
pearing in the final version of the formula for L. (How do we know (1−b2/a2)
is non-negative?) Then the non-negative root k is called the eccentricity of
the ellipse.

Question 12:

(a) How large can k be? How small? What is the eccentricity of a circle?

(b) The integral
∫ π/2
0

(1 − k2 cos2 t)
1
2dt is called a complete elliptic integral.

Choose a = 1 so k2 = 1 − b2. Use Simpson’s rule to find the values of this
integral for k = 0, 0.1, 0.2, . . . , 0.9, 1.0. How do these results correspond to
your intuition about lengths of the various ellipses?

10.5 Monte Carlo methods

We can use a pile of stones to measure the area of a pond as follows. Suppose
the pond lies in a rectangular field of known area. Throw stones at random
so that they all land within the field. A reasonable estimate of the pond’s
area could be the area of the field times the fraction of stones which make
a splash. (Why is this so?) This suggests how we can determine integrals
approximately using chance.

Fig. 10.3: A pond

164 CHAPTER 10. NUMERICAL INTEGRATION

To make life easy, suppose that we have a function f(x) defined on an
interval [a, b] with 0 ≤ f(x) ≤ H for a ≤ x ≤ b, where H is some fixed
nonnegative number. Suppose also that we randomly select m pairs of num-
bers xi, yi, 1 ≤ i ≤ m, with a ≤ xi ≤ b, and 0 ≤ yi ≤ H. For each i, we
record a “splash” if f(xi)− yi ≥ 0, and let s be the number of splashes. An
approximation to our integral is then

H × (b− a)× s

m
.

x

y
H

y=f(x)

Fig. 10.4: A “pond” beneath a graph

Exercise 9: Explain the analogy between this procedure and measuring the
area of the lake by tossing stones.

An alternative method is based on the fact that the average value of f(x)
on the interval [a,b] is

1

b− a

∫ b

a

f(x)dx.

If we now randomly select m points xi with 1 ≤ i ≤ m in the interval [a, b],
we can approximate the average value of f by

1

m

m∑
i=1

f(xi).

10.5. MONTE CARLO METHODS 165

Hence an approximation to the integral is

(b− a)

m

m∑
i=1

f(xi).

Both methods are referred to as Monte Carlo techniques (although using
chance mechanisms to solve mathematical problems isn’t as expensive as
visiting the gaming tables in Monte Carlo).

Exercise 10: Explain the logic of the second method.

We can use a computer program to simulate our two Monte Carlo meth-
ods. Most computer languages have a function rnd that selects a random
number between 0 and 1. The two programs monte-1 and monte-2 exploit
this function. One caution: unless you reset the “seed” used by your com-
puter’s random number generator, you will get exactly the same sequence of
random numbers every time you run your program. Each program, therefore,
includes a command permitting the user to reset the seed.

Program outline: Monte-1

Input: a positive integer m, a function f(x), real numbers a,

b, H, where 0 <= f(x) <= H for a <= x <= b.

Output: an estimate for the integral of f on [a,b]

using method 1 ("throwing stones")

Reset seed for random number generator

s = 0 ! Set counter for s = number of "splashes"

FOR i = 1 TO m

x := a + (b-a) * rnd ! Select x "randomly" in [a,b]

y := H * rnd ! Select y "randomly" in [0,H]

IF (f(x) - y) >= 0 THEN s:= s + 1

NEXT i

Estimate := H * (b-a) * s/m

PRINT Estimate

Program outline: Monte-2

166 CHAPTER 10. NUMERICAL INTEGRATION

Input: a positive integer m, a function f(x), real numbers a, b

Output: an estimate for the integral of f on [a,b]

using method 2 (based on the average value of f)

sum := 0

FOR i = 1 TO m

x := a + (b-a) * rnd ! Select x "randomly" in [a,b]

sum := sum + f(x)

NEXT i

Estimate := (b-a) * sum/m

PRINT Estimate

Exercise 11: Explain why both programs work.

Question 13: Try both methods out on some of our previous integrals.
(E.g., f(x) = cosx, for 0 ≤ x ≤ π/2.) How do the Monte Carlo methods
compare in accuracy to our earlier methods?

Question 14: How do the Monte Carlo methods depend on the number
m of points randomly chosen? (This is a very open ended problem! In
order to make any headway, you will have to try some large values of m; try
m = 5000, 10000,)

10.6 Higher dimensions

Simpson’s rule is, generally, a better method of approximating integrals than
either of the Monte Carlo methods. But this is only true for functions of a
single variable. When we integrate functions of 2, 3, 4, . . . variables the Monte
Carlo methods become much more attractive (and for n ≥ 3 better) than the
analogue of Simpson’s rule.

Even if you have not studied multivariable calculus, you can investigate
higher dimensional integrals using Monte Carlo methods. For example, using
the second method, you can estimate the integral of

f(x, y) = x2 + 6xy + y2

10.6. HIGHER DIMENSIONS 167

over the unit square in the x-y plane 0 ≤ x, y ≤ 1 , which we will call A.
Since the area of A is 1, the average value of f on A is∫ ∫

A

f(x, y) dxdy,

and this integral can be approximated by

1

m

m∑
i=1

f(xi, yi)

where the 0 ≤ xi, yi ≤ 1 are 2m randomly selected numbers.

We can tackle an interesting geometric problem using a variant of our
first Monte Carlo method, counting “splashes.” Imagine a ball of radius 1/2
sitting inside the unit cube centered at the origin. The pictures below are for
dimensions 1, 2 and 3, but the mathematics makes sense in dimension n for
any positive integer n. In the case where n = 1, the “volume” of the “ball”
is simply the length of the line segment [−1/2, 1/2]. Similarly, “volume” in
dimension 2 means the area of the circle of radius 1/2.

In dimension n, the unit cube centered at the origin consists of all n-tuples
(x1, x2, . . . , xn) with −1/2 ≤ xi ≤ 1/2 for each i. The sphere of radius 1/2
consists of all n-tuples with√

x21 + x22 + · · ·+ x2n ≤ 1/2 .

Question 15: What is the value of the quotient

volume ball

volume cube
=

volume ball

1
,

and how does this value behave as the dimension n increases?

You can attack this problem using the program ball. Pseudocode for
the program appears below, and working code in True BASIC and Mathcad
is at the end of this chapter. In the program ball, n is the dimension and
m is number of points chosen randomly inside the unit cube. Picking a point
inside the cube means picking n coordinates between –1/2 and 1/2. Since

168 CHAPTER 10. NUMERICAL INTEGRATION

Fig. 10.5: Unit ball

the function rnd returns a random number between 0 and 1, you have to
subtract off 1/2 to get a number between –1/2 and 1/2. The chosen point
will be inside the ball of radius 1/2 if and only if the sum of the squares of
the coordinates is less than or equal to 1/4. (Do you see why?) As in our
program Monte-1, s is the number of randomly chosen points that land
inside the ball. Since the volume of the unit cube is 1, the fraction s/m is an
estimate of the ratio volume ball/volume cube and thus an estimate of the
volume of the ball of radius 1/2 in dimension n.

Program outline: Ball

Input: positive integers n and m ! n = dimension, m = # points

Output: estimate of the volume of the ball of radius 1/2

s = 0 ! Counts "splashes"

FOR i = 1 TO m

sum = 0

FOR j = 1 TO n

x = rnd

10.7. COMPUTER PROGRAMS 169

sum = sum + (x - 1/2)^2

NEXT j

IF sum <= 1/4 THEN s = s + 1

NEXT i

PRINT s/m

10.7 Computer programs

10.7.1 True BASIC programs

Program: Integral

DIM Fval(0 to 2000)

! Enter any function and any interval [a,b] here

DEF f(x) = cos(x)

LET a = 0

LET b = 1.570796 !approx pi/2

CLEAR

PRINT

INPUT prompt "What is m (a positive integer)? ":m

LET n = 2 * m

LET h = (b - a)/n

! Computing the function at endpoints of subintervals (array)

LET x = a

FOR i = 0 TO n

LET Fval(i) = f(x)

LET x = x + h

NEXT i

! Computing the master sum for left, right, and trap sums

170 CHAPTER 10. NUMERICAL INTEGRATION

LET Sum = 0

FOR i = 0 to m

LET Sum = Sum + Fval(2 * i)

NEXT i

LET Leftsum = [Sum - Fval(n)] * (2 * h)

LET Rightsum = [Sum - Fval(0)] * (2 * h)

Let Trapsum = {Leftsum + Rightsum]/2

! Computing the midpoint approximation

LET x = a

LET M = 0

FOR i = 1 to m

LET M = M + Fval(2*i-1)

NEXT i

LET Midsum = M * (2 * h)

! Computing the Simpson’s rule approximation

LET E = 0

IF (m > 1) THEN

FOR i = 1 to (m - 1)

LET E = E + Fval(2 * i)

NEXT i

END IF

LET U = 0

FOR i = 1 to m

LET U = U + Fval(2 * i - 1)

NEXT i

LET Simpsum = (Fval(0) + 4 * U + 2 * E + Fval(n)) * h/3

! Display values

PRINT

PRINT "The left endpoint sum gives: "; Leftsum

PRINT "The right endpoint sum gives: "; Rightsum

PRINT "The midpoint sum gives: "; Midsum

PRINT "The trapezoidal rule gives: "; Trapsum

PRINT "Simpson’s rule gives: "; Simpsum

END

10.7. COMPUTER PROGRAMS 171

Program: Integral-2

DIM Fval(0 to 2000)

! Enter any function and any interval [a,b] here

DEF f(x) = cos(x)

LET a = 0

LET b = 1.570796 !approx pi/2

! Enter actual value of the integral here

LET Actual = 1

.

.

.

! Display values

PRINT

PRINT "The error in the left endpoint sum is: "; Leftsum - Actual

PRINT "The error in the right endpoint sum is: "; Rightsum - Actual

PRINT "The error in the midpoint sum is: "; Midsum - Actual

PRINT "The error in the trapezoidal rule is: "; Trapsum - Actual

PRINT "The error in Simpson’s rule is : "; Simpsum - Actual

END

Program: Monte-1

! Enter a function with 0 <= f(x) <= H on the interval [a,b]

DEF f(x) = cos(x)

LET a = 0

LET b = 1.570796 ! approx pi/2

LET H = 1

RANDOMIZE ! User resets the seed

CLEAR

INPUT prompt "What is m? ":m

LET s = 0

FOR i = 1 TO m

LET x = a + (b - a) * rnd ! Choose x randomly in [a,b]

LET y = H * rnd ! Choose y randomly in [0,H]

IF (f(x) - y) >= 0 THEN

LET s = s + 1

172 CHAPTER 10. NUMERICAL INTEGRATION

END IF

NEXT i

LET estimate = H * (b - a) * s / m

PRINT

PRINT "estimate = ";

PRINT estimate

END

Program: Monte-2

! Enter any function and an interval [a,b]

DEF f(x) = cos(x)

LET a = 0

LET b = 1.570796 !approx pi/2

RANDOMIZE !lets the user reset the seed

CLEAR

INPUT prompt "What is m? ":m

! Loop here to sum values of f(x)

LET sum = 0

FOR i = 1 TO m

LET x = a + (b - a) * rnd !choose x randomly in [a,b]

LET sum = sum + f(x)

NEXT i

LET estimate = (b - a) * sum / m

PRINT

PRINT "estimate = ";

PRINT estimate

END

Program: Ball

RANDOMIZE

PRINT "n is the dimension"

INPUT prompt "What is n? ":n

PRINT "m is the number of points to be chosen in the unit cube"

INPUT prompt "What is m? ":m

10.7. COMPUTER PROGRAMS 173

LET s = 0

FOR i = 1 TO m

Let sum = 0

FOR j = 1 TO n

LET x = rnd

LET sum = sum + (x - 1/2) * (x - 1/2)

NEXT j

IF sum <= 1/4 then LET s = s+1

NEXT i

PRINT "The volume of the ball is approximately "; s/m

END

174 CHAPTER 10. NUMERICAL INTEGRATION

10.7.2 Mathcad programs

Chapter 11

Sequences and Series

11.1 Introduction

You have certainly seen examples such as

.3, .33, .333, .3333 . . .→ 1

3

where we speak of an infinite sequence of numbers converging to a number.
Similarly, you have probably seen examples where we add the members of
an infinite sequence of numbers to form an infinite series, and speak of such
a series converging to a sum. In fact, the sequence of numbers above can be
rewritten as a series

3

10
+

3

102
+

3

103
+

3

104
+ . . . =

1

3
.

The notion of convergence of a sequnce of numbers, and the related notion
of convergence of a series, is central to mathematical analysis. In this chapter,
you will

• Explore, both informally and formally, the convergence of certain se-
quences and series, and

• Examine in some detail the harmonic series and its divergence.

175

176 CHAPTER 11. SEQUENCES AND SERIES

You will also use the computer program calcwin. This program allows
you to view, both graphically and numerically, many values of a sequence
whose terms you can enter in closed form. It also allows you see, again
both graphically and numerically, the corresponding series formed by adding
members of the sequence. The graphical output allows you to “see” the
convergence (or lack thereof).

11.2 The mathematical ideas

In this lab, we will be interested in ways that a sequence {ak} of numbers,

a1, a2, . . . , ak, . . .

may converge to a limit L, and ways in which a sequence may be used to
build a series of numbers

∞∑
k=1

ak = a1 + a2 + . . .

that may itself converge to a sum S. The symbol k is often called the index
for the series, and it may have its first value at 1 or 0 or any other finite
integer. Infinite series are frequently found in applications in mathematics,
physics and the other sciences.

Informally, we say that a sequence ak converges to a limit L if the
terms of the sequence get arbitrarily close to L as k gets arbitrarily large
(approaches positive infinity).

Exercise 1: This is a somewhat philosophical exercise. Write a paragraph
describing what this informal definition of convergence of a sequence {ak}
to a limit L means to you. Be as precise as you can. Articulate what it
means for the numbers {ak} to be “arbitrarily close” to L and for k to get
“arbitrarily large”. Use common sense, and be as mathematical as you can.

A convergent infinite series may be thought of as the limit (in the sense
that you just characterized) of the sequence {sn} of partial sums

sn =
n∑
k=1

ak,

11.2. THE MATHEMATICAL IDEAS 177

and we will say that the series converges to a real number S provided the
sequence {sn} converges to S as n approaches infinity. If the series converges
to S, then we say that S is its sum. We write

S =
∞∑
k=1

ak = a1 + a2 +

If a series does not converge, it will be said to diverge.

A pictorial example

There are many ways to examine a series, and these often allow us to say
whether the series converges or it diverges. Sometimes, in the case of con-
vergence, we can also identify the numerical sum of the series. Frequently
there is a nice interplay between the numerical series and a geometric repre-
sentation.

For instance, suppose you have the series:

∞∑
k=1

1

2k
=

1

2
+

1

4
+

1

8
+ . . .

If you have seen the theory of geometric series, you will know that this series
converges, and you will know what its sum is. On the other hand, you can
arrive at the same conclusion by thinking of rectangles of area 1/2, 1/4, 1/8, ...
filling a 1-unit by 1-unit square when they are arranged as in Figure 11.1

1

1

Fig. 11.1: Rectangles filling a unit square

178 CHAPTER 11. SEQUENCES AND SERIES

Clearly, the sum of these areas is 1 square unit. On the other hand, if we
combine these same rectangles pairwise into shapes such as in Figure 11.2 we
also get a total area of one square unit.

1

1

Fig. 11.2: Another way to fill the unit square

Exercise 2: What numerical series, summing to 1, does the diagram in
Figure 11.2 suggest to you?

An algebraic example

So far we’ve looked geometrically at the convergence of a series. Suppose,
now, we take a quick look at the series

∞∑
k=1

1

k(k + 1)
=

1

1 · 2
+

1

2 · 3
+ . . .

Exercise 3: Find an expression for the partial sum

n∑
k=1

1

k(k + 1)

and find the sum of the series.

[Hint: Note that the expression 1
k(k+1)

can be otherwise written 1
k
− 1

k+1
. You

can prove this algebraically by combining these two fractions over a common
denominator and simplifying, or, if you have seen it in calculus, you can use
the method of “partial fractions” on the initial expression.]

11.3. THE HARMONIC SERIES 179

11.3 The harmonic series

We now begin an examination of the series formed from the sequence whose
terms are ak = 1/k. Our series, then, is

∞∑
k=1

1

k
= 1 +

1

2
+

1

3
+ . . .

If you have studied infinite series in calculus, you probably know that this
series, called the harmonic series, diverges. That is, its sequence of partial
sums does not converge to a real number and, in fact, it increases monoton-
ically without bound. A question of interest is: how quickly, or slowly, does
it diverge (in this case, get large)?

Exercise 4: By hand or with a calculator, find s2, s3, s4, s5, and s6 for the
harmonic series.

As a way to get a feeling for how fast the series grows, define the function
J(n) to be the least integer greater than or equal the partial sum

sn =
1

1
+

1

2
+

1

3
+ . . .+

1

n
.

So, for example, J(1) = 1, J(3) = 2, J(4) = 3.

Exercise 5: By hand or with a calculator, find J(5), J(6), and J(11).

Figuring out J(n) by hand quickly becomes tedious. You can write a short
program to compute J(n) for large values of n. Alternatively, we use the
program calcwin in the next section to explore the behavior for large n of
sn and J(n) for the harmonic series. Before turning to that section, try to
answer the following questions. If you cannot, keep them in mind as you
explore further.

Exercise 6: Suppose you know J(n). Can you estimate J(2n)? In particu-
lar, can you say that J(2n) > J(n). Why or why not? Given n, can you find
N as a function of n which guarantees that J(N) = J(n) + 1? (Work a few
examples for small values n. Can you make any conjectures?)

180 CHAPTER 11. SEQUENCES AND SERIES

Using calcwin

Now load the calcwin program sequences and series, choose the option
series plotter, and change ak [labeled A(k) at the bottom of the screen]
to equal 1/k. As a general rule, in this and other programs of calcwin, you
can change any box colored yellow, and you can press any gray button.

The Summary Window at the lower part of the screen shows a chart:

Low Value Current Value High Value Tick Unit
Sum –1 2 1
A(k) –1 2 1

k: 1 100 Press to Remove Limit

In this lab, you will shortly plot the first 10, 100, 500, and 1000 terms
of the harmonic sequence along with the corresponding partial sums. The
conditions which are currently entered in the program display values of ak
ranging from a LOW VALUE of −1 to a HIGH VALUE of 2, −1 ≤ ak ≤ 2.
The same limits are set for the SUM display. As you can see, the index k is
presently set to range from 1 to 100. The HIGH VALUE of k (currently 100)
we denote by n. Click the PRESS TO START button in the blue PLOT
CONTROL WINDOW. When the plotting stops, press the END button to
leave the plotting mode. At this point, your summary on the screen should
look something like the following table:

Low Value Current Value High Value Tick Unit
Sum –1.0000 5.18737... 2.0000 1.00
A(k) –1.0000 0.01000... 2.0000 1.00

k: 1 100 100 Press to Remove Limit

You see on the screen (and depicted in Figure ??) that the values of ak
are plotted as vertical lines on the lower picture while only 3 of the sk lines
appear on the upper picture. We are able to see only the first few partial
sums because of the narrow window through which we are viewing them.
Since the sum of the first 100 terms of the harmonic series is about 5.187...,
we can see a complete picture of the series up to this point by setting HIGH

11.3. THE HARMONIC SERIES 181

21-1

Fig. 11.3: Partial sums and terms of the harmonic series: (Above) partial sums over the
inadequate range [–1,2] and (below) the terms 1

2 ,
1
3 , . . .

VALUE for the SUM display to something larger than 5.187.... So that we
can keep our endpoints as integers, we choose a HIGH VALUE of 6. Make
this change now: in the yellow column labeled High Value enter 6 in the
row labeled Sum. Now do the plot again (click on PRESS TO START and
press the END button when the plotting is finished). This time all of the
partial sums are visible. Note that 6 is the smallest integer value that will
work. This idea will be important in the next section.

Now, after the plotting, your summary chart should look like this:

Low Value Current Value High Value Tick Unit
Sum –1.00000 5.18737... 6.00000 1.00
A(k) –1.00000 0.01000... 2.00000 1.00

k: 1 100 100 Press to Remove Limit

and the series should be nicely displayed as in Figure 11.4.

We suggest that you change the LOW and HIGH values for the graph of
A(k) to be 0 and 1, respectively, since 0 < 1

k
≤ 1 for all k ≥ 1. This will give

better bounds for the lower picture.

Here is another way to think about J(n). Suppose that you are going to
display a number of such plots of partial sums of the harmonic series and, as
was just the case, you want to show the various partial sums on the screen
using intervals that: 1) include the origin, 2) have integer endpoints, and

182 CHAPTER 11. SEQUENCES AND SERIES

Fig. 11.4: Partial sums (over the range [−1, 6]) and terms of the harmonic series

3) are just large enough to include all of the terms. That is, suppose you
wish to create a display like the one we generated above. The question is:
what interval should you initially fix to accomplish these objectives? The
principal interest will be in partial sums in which the HIGH VALUE n of k
is quite large (say, many thousands of terms). In this case, you would greatly
prefer to have the display set up properly prior to doing the time-consuming
calculation! From your previous (hand-calculated) answers to exercise 4, you
saw that with n = 3, you would want to show the sum over the interval
[0, 2] whereas with n = 4, you would need to use [0, 3]. Notice that J(n)
is exactly the right hand endpoint of the smallest interval starting at 0 and
having integer endpoints in which you can display the partial sum graph for
the harmonic series with n terms.

Try the following exercises regarding J(k).

Exercise 7: Summarize in a chart like Table 1 the results that you got in
the previous section (showing values of k, of ak, the sum for k terms, and

11.3. THE HARMONIC SERIES 183

J(k)). For instance,

k ak Sum J(k)
3 0.3333... 1.83333... 2
4 0.2500...
10 0.1000...
100

Table 1

Exercise 8: Find J(500) and J(1000). Fill in this information on your chart
from Exercise 7.

Exercise 9: Try the same technique for five or six other values of your choice
for k between 100 and 1000, extending the chart to record your values at each
stage.

Now we use calcwin to explore some properties of J(n) for general values
of n. As we do this, we will look in more detail for trends and patterns that
emerge.

• Be sure that the function still reads A(k) = 1/k.

• Set the yellow boxes in the Summary Window to show A(k) going from
Low Value 0 to High Value 1 and, this time, SUM from Low Value 0
to High Value 12.

• Click on the PRESS TO REMOVE LIMIT button. The value should
now say Unlimited, allowing you to calculate indefinitely without the
computer stopping after a fixed number of additions.

• When the computer is performing the additions, you can stop the action
by clicking on the FREEZE button [or you can click on the “Direction
Menu” which will appear after you have stopped the action for the first
time].

184 CHAPTER 11. SEQUENCES AND SERIES

It looks like this:

Forward MOVE
Forward 1 STEP

Backward 1 STEP
Backward MOVE

The Direction Menu

Clicking on this will help you locate a particular value of k or of the SUM.
Practice this a bit.

• Click on PRESS TO START.

• Click on FREEZE

• Try clicking on the FORWARD 1 STEP item a few times.

• Try BACKWARD 1 STEP a few times.

• Click on BACKWARD MOVE to go all the way back to k = 1. Then
observe what FORWARD 1 STEP does.

• When you have finished practicing and you see what these functions
do, press the FREEZE and END buttons.

Now try the following exercises.

Exercise 10: First, we turn the question from the previous parts around.
This time, for each of the integers 1, 2, 3, 4, 5, 6, 7, 8, 9, find the largest values
of n that give these integers as J(n). For example, for the integer 4, the
value you are looking for is 30. This is the case because the SUM for n = 30
is 3.99498 . . . (so J(30) = 4), whereas the SUM for n = 31 is 4.02724...
(J(31) = 5).

11.3. THE HARMONIC SERIES 185

Record these in a chart like the one below (ignoring for now the column
that says “Ratios”):

n Sum(n) Sum(n+1) J(n) Ratios

1 1.. ... 1.50000.. 1 xxxxxxxx
3 1.83333.. 2.08333333 2 3.00000

3
30 3.99498... 4.02724520 4

5
6
7
8
9

Table 2

Exercise 11: In the Ratios column of Table 2, fill in numerical ratios of the
current row’s n to the previous row’s n. So, for instance, the 3.00000 that is
already filled in is the ratio of the values 3 to 1 in the n’s column. What
do you notice about the ratios? Would you care to make any speculations
here?

Exercise 12: You will need to use a stop watch or a watch with a second
hand as you begin to plot in this section. Be sure that the general term
function, A(k), is set to 1/k and that the number in SUM under HIGH
VALUE is set large enough, say to 12. When you start the plotting, be
ready to use the FREEZE button rather quickly. YOU WILL INITIALLY
(in Step (1) below) PLOT TERMS FOR EXACTLY ONE MINUTE!

1. Click the PRESS TO START button, and after exactly 60 seconds,
press the FREEZE button—do this now. Observe how many terms of
this harmonic series your computer has calculated after one minute.
Record this value in your notebook. If you make a mistake, just press
FREEZE, then END, and start over.

186 CHAPTER 11. SEQUENCES AND SERIES

1 2 3 4 5

Fig. 11.5: Left Riemann sum of f(x) = 1/x over [1, 5], with 4 rectangles

2. Assuming that it will continue at this same rate, estimate how many
terms, N , your computer will have calculated by this time tomorrow
if it is allowed to continue running. [Note: there is no single correct
answer to this estimate, since different computers do their work at
different speeds, depending on the configuration of the hardware.]

11.4 The logarithmic integral

We now attempt an estimate of the sum S, as it will have been calculated
by this same time tomorrow—an estimate done without having to leave the
computer running all that time! We have just estimated the number N of
terms that will be calculated. Next we estimate the sum S for this value
of N . Once this is done, J(N) can easily be determined—it’s just the first
integer greater than or equal to S. We approach this problem with a strategy
you may not have predicted.

Look at the function f(x) = 1/x for 1 ≤ x ≤ 5. We will partition the
interval [1, 5] into 4 equal subintervals (each of length 1 unit). We make the
important observation that the 4-th partial sum of the harmonic series can
be viewed as the sum of the areas of the 4 rectangles pictured in Figure 11.5.
Do you see why this is so? Be sure you understand this fully before you go
on.

The exact value of the area we have looked at under the curve y = 1/x
from x = 1 to x = 5 is obtainable from the fundamental theorem of calculus.

11.4. THE LOGARITHMIC INTEGRAL 187

1 2 3 4 5

(1,1)

Fig. 11.6: Triangle-like regions moved into the unit square U

Since ln x is an antiderivative of 1/x,∫ 5

1

1

x
dx = ln 5− ln 1 = ln 5 .

The integral of 1/x is called the logarithmic integral.

Observe that for any positive integer n

ln(n+ 1) < 1 +
1

2
+

1

3
+ . . .+

1

n

We rewrite this:
ln(n+ 1) < sn

Exercise 13: Now we try some geometry. For any n, the value sn−ln(n+1),
as represented by the total area of the “triangular” regions above the curve
1/x of Figure 11.5, can be made to fit into the unit square labeled U (see
Figure 11.6).

To accomplish this, imagine picking up each of the “triangular” regions
within the rectangles lying above 1/x between 1 and n + 1, and moving it
horizontally to the left until it just fits inside of U . Then sn − ln(n + 1),
represents the total area that is shaded in U (why is this?). In the left-hand
diagram in Figure 11.7, we isolate the square U after the “triangular” regions
have been moved.

An n increases, we see that the shaded area increases (since we are adding
additional regions to it) so, in particular, sn − ln(n + 1) is an increasing

188 CHAPTER 11. SEQUENCES AND SERIES

1

1/2

1/3

1/4

1/5

U
1

1/2

1/3

1/4

1/5

U

Fig. 11.7: Triangle-like regions in unit square U and actual triangles replacing them

sequence. Since the shaded region fits into U , we clearly have that 0 <
sn − ln(n+ 1) < 1, and hence

ln(n+ 1) < sn < ln(n+ 1) + 1 (11.1)

holds (explain this reasoning carefully). Also, since sn − ln(n + 1) increases
and is bounded above by 1, it does have a limit less than or equal to 1 , which
we will study in the next section. [A theorem from analysis guarantees that
such a sequence (bounded above and increasing) does indeed converge, and
to a number not exceeding the upper bound.]

This now gives us a bound depending on n for the partial sums, sn. And
inequality (11.1) also suggests that a reasonable first approximation for J(n)
would be the smallest integer greater than or equal to ln(n+1)+1. certainly
this would be an upper bound for sn and it is not very far above.

Exercise: Use this estimate to redo exercise 6.

Exercise 14: Let’s see if we can improve things even further! Consider the
right-hand diagram in Figure 11.7. In this picture, we have replaced the
slightly curved edges of the “triangular” regions of the left-hand picture with
straight lines, so that we now have actual triangles (whose exact area we
can find). What is the exact area which the total of the shaded rectangles
approaches as n approaches infinity? Carefully explain your reasoning. [Hint:
you might want to look back at exercise 3.]

11.4. THE LOGARITHMIC INTEGRAL 189

From the way that the regions differ in the two diagrams of Figure 11.7,
it is clear that the shaded area, sn− ln(n+1), is larger (though only slightly)
in the left-hand diagram than in the right. Hence, our limit is greater than
1/2 and well less than 1.

Exercise 15: In Table 3, fill in the column sn with the values from your
work in Table 2. Then with a calculator, fill in the logarithm column and
the difference column.

n sn ln(n+ 1) sn − ln(n+ 1)
3

10
100
500

1000

Table 3

In the next section, we will further explore this sequence using the com-
puter. It will lead us to discover an important constant in mathematics.

Using calcwin

Load the calcwin program integrator/antiderivative plotter, and
choose the function/integration option. We can use this program to
estimate the logarithmic integral and to illustrate some of the ideas above.
Specifically, we will use this program to estimate∫ b

1

1

x
dx

with subintervals of length 1. The function 1/x corresponds to the general
term 1/k of the harmonic series.

We begin with the small example we just looked at, estimating the integral
of the function f(x) = 1/x over the domain [a, b] = [1, 5].

First set it up:

190 CHAPTER 11. SEQUENCES AND SERIES

• Change f(x) to the expression 1/x.

• Use a horizontal interval of [1, 5] to display the graph.

Set a = 1, b = 5.

• A vertical interval of [0, 1] should display the graph nicely. Under
Graph Vertical Limits.

Set Bottom = 0, Top = 1.

• Plot the function by pressing PLOT and, in the blue control box, use
the button PRESS TO START. This displays the function. When the
plotting is finished, press END.

Below, you will continue working with the graph you just plotted and
divide the domain into 4 equal subintervals so that each one will have a width
of 1 unit. A Riemann estimate over [1, 5] with left-endpoint calculation will
give you the harmonic series’ partial sum with 4 terms: 1 + 1/2 + 1/3 + 1/4.

• Set the box labeled n to 4 (this is near the lower right corner of the
screen).

• Set the box labeled FRAC to 0 to give left-endpoint calculation in each
of the subintervals. [Note: In the default, FRAC set at 0.5 indicates
“midpoint calculation,” etc.]

• Press the button labelled USE THE ENTIRE INTERVAL, [a, b] to
integrate over the chosen domain interval [1, 5].

• Press the INTEGRATE button (lower right corner of the screen) and
click on the PRESS TO START button in the blue INTEGRATION
CONTROL box.

• Press END when the rectangles have been plotted. You have calculated
the LEFT RIEMANN SUM using 4 rectangles. Record its value from
the INTEGRAL ESTIMATE box, 2.083333..., in your notebook.

11.5. EULER’S CONSTANT 191

11.5 Euler’s constant

We want to find a better estimate for the number J(N) from 11.3.1. (Recall
that N is the number of terms that will be computed by tomorrow at this
same time.) To do this, we go again to the computer. We need a program to
calculate the difference sn − ln(n + 1) more precisely than we have done so
far. We call the program euler, for reasons that will become clear shortly.
At the end of the chapter there are versions of euler in True BASIC and
Mathcad.

Program outline: Euler

Input: Number ROWS of rows to display at one time.

Output: ROWS repeats of

n, SUM(n), ln(n+1), DIFF=SUM(n)-ln(n+1).

DO

Increment and print n.

Calculate and print SUM(n).

Calculate and print ln(n+1).

Calculate and print the difference: DIFF = SUM(n)-ln(n+1).

Pause if n mod ROWS = 0. ! i.e., if n is a multiple of ROWS

Either quit or continue.

LOOP ! Go back to the DO statement.

End

Question 1: Use euler to check your values in Table 3 for DIFF = sn −
ln(n + 1) for n = 50 and 100. What pattern do you notice for the values of
DIFF as n gets large? Run euler again, this time letting ROWS = 500.
Check your values in Table 3 for DIFF = sn − ln(n + 1) for n = 500 and
n = 1000. What is the value of DIFF for n = 2000?

The number to which these DIFF values converge is a famous one, called
Euler’s constant. It is the number, that we’ll denote C, that is defined as
follows.

C = lim
n→∞

(sn − ln(n+ 1)).

192 CHAPTER 11. SEQUENCES AND SERIES

The convergence is very slow, and we know that C > 1/2. (Remember our
geometric suggestion that the shaded area DIFF of the square U was slightly
greater than 1/2).

Question 2: Use euler to answer the following two questions:

1. At what n does the value of DIFF become greater than 0.5? Since we
showed that the values of DIFF form an increasing sequence, you know
that DIFF is then greater than 0.5 for all succeeding n’s. That is, for
all values of n beyond the one you found, 0.5 < sn − ln(n+ 1) < 1.

2. Similarly, for what value of n is DIFF > .54? DIFF > .55? DIFF
> .56? DIFF > .57? DIFF > .574? . . . , etc. Make a chart showing
these values as in Table 3. Note that the last value in the table (where
DIFF > .5772) will require a fairly large amount of computing—its
value is 31,918.

DIFF n

0.500
0.550
0.560
0.570
0.574
0.575
0.576
0.577

0.5771
0.5772

Table 4

The actual value of Euler’s constant is known to be C = 0.57721567... It is
still not known whether this constant is an irrational number!

Now, we know that sn − ln(n + 1) → C and this converging sequence is
increasing, so we have that for all n, 0 < sn − ln(n+ 1) < C. Hence

ln(n+ 1) < sn < ln(n+ 1) + C (11.2)

11.6. ADDITIONAL EXERCISES AND QUESTIONS 193

gives us the best upper bound that we could expect for the numbers sn.

Question 3: So now you can answer the central question of this chapter
with much better results. Answer the following questions.

(a) What does inequality (11.2) suggest as the way to calculate J(n)?

(b) From your earlier calculation with the stopwatch, what is the number
N of terms that will be computed by this time tomorrow? What is J(N)?

(c) What interval (from 0 to an integer upper bound J(n)) would you use
if you were going to plot the harmonic series to 1 million terms? To 1 billion
terms? That is, what are J(1, 000, 000)? J(1, 000, 000, 000)?

(d) This is a calculator problem (too large for the computer!). Use the
facts you have developed to estimate the number of terms in the harmonic
series whose partial sums are contained in the intervals:

[1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 12], [1, 16], [1, 20].

[Hint: Use the fact that ex is the inverse of ln(x).]

(e) Use the program sequences and series to test your results in the
previous question (where appropriate—What do we mean by “where appro-
priate”?). Where deemed appropriate, what are the actual values of n and
sn for which the partial sums fail to fall in the given intervals. Show a careful
chart of these values.

11.6 Additional exercises and questions

Use a computer (calcwin—sequences and series is ideally suited for
this) to explore some of the following series. See if you can guess whether
the limit of the series exists, and (if so), what that limit is. See if you can
prove your observations.

1.
∞∑
k=1

(−1)k+1

k
= 1− 1

2
+

1

3
− 1

4
+

1

5
− . . .

194 CHAPTER 11. SEQUENCES AND SERIES

2.

4
∞∑
k=1

(−1)k+1

2k − 1
= 4− 4

3
+

4

5
− 4

7
+ . . .

3. Hint: This limit is a power of π.

6 +
6

4
+

6

9
+

6

16
+

6

25
+ . . .

4. Hint: And another power of π.

90
∞∑
k=1

1

k4

5.

12
∞∑
k=1

(−1)k+1

k2

[Does this answer relate to an earlier answer?]

6.
∞∑
k=1

1

k(k + 2)

[See if you can prove this result. It’s similar to the example in 11.2.2.]

7.
1

1 · 3
+

1

3 · 5
+

1

5 · 7
+

1

7 · 9
+ . . .

[Again, prove this result in a similar fashion.]

8.
∞∑
k=1

(−1)k
sin(k)

k

9. Note: in the calcwin programs, k! is written fact(k), and 0! = 1.

1 + 1 +
1

2!
+

1

3!
+

1

4!
+ . . .

11.7. COMPUTER PROGRAMS 195

10.
∞∑
k=0

(−1)k

k!

[How does this relate to the previous example?]

Question 4: In exercise 11, you were asked to speculate on the behavior of
the ratios of the successive entries in the first column of Table 2. Can you
support your speculations with mathematical analysis? This is a somewhat
more challenging question than others we have looked at. [Hint: Observe
that the entries in the first column are those integers n for which J(n) takes
the values 1, 2, 3, We have seen that for large n

J(n) ≈ ln(n+ 1) + C

where C is Euler’s constant. Use this expression to write n in terms of k if
J(n) = k and k is large. Similarly, express m in terms of k if J(m) = k + 1.
What can you say about the limiting value of the ratio m/n as k approaches
infinity?]

11.7 Computer programs

11.7.1 True BASIC Program

Program: Euler

!Variable L holds the natural logarithm

!Initialize: n to 0, SUM to 0, L to 0, DIFF to 0

LET n=0

LET SUM = 0

LET L = 0

LET DIFF = 0

CLEAR !Clears the screen

PRINT "A reasonable answer here is 20."

INPUT prompt "How many rows do you want to see at a time? ": ROWS

196 CHAPTER 11. SEQUENCES AND SERIES

IF ROWS < 1 then STOP !Assures value is at least 1

CALL heading

PRINT

DO

LET n = n+1

PRINT using "#####":n;

LET SUM = SUM + 1/n ! the SUM is accumulating,

! adding 1/n in the loop

PRINT using " ##.############":SUM;

PRINT " ";

LET L=log(n+1)

PRINT using " ##.############":L;

PRINT " ";

LET DIFF=SUM-L

PRINT using " ##.############":DIFF

IF mod(n, ROWS) = 0 then

IF ROWS > 22 then CALL heading

PRINT "Press ’q’ to exit the program, ENTER to continue";

GET KEY:quitter !to pause for an input

IF quitter = 113 then !checks for "q" pressed

STOP !gets you out of the loop

ELSE

CLEAR ! Clears the screen

IF ROWS <= 22 then CALL heading

END IF ! This ends the IF A$ = "q" then...

END IF ! This ends the IF MOD(N,ROWS) = 0 then

LOOP ! This ends the "do" loop

SUB heading

PRINT "==================================";

PRINT "=================================="

PRINT " n SUM(n) ";

PRINT "LN(n+1) DIFF=SUM-LN"

PRINT "==================================";

PRINT "=================================="

END SUB

END

11.7. COMPUTER PROGRAMS 197

11.7.2 Mathcad program

198 CHAPTER 11. SEQUENCES AND SERIES

Chapter 12

Experiments in Periodicity

12.1 Introduction

Periodic functions are all around us. They describe phenomena that repeat
over and over again, like the rising of the sun, the oscillation of a spring,
and the motion of sound. The trigonometric functions are the most familiar
periodic functions. They can be combined to make new functions. We can
also produce new functions by differentiating and antidifferentiating. In this
chapter, we will use the program calcwin to explore properties of area
accumulation functions (antiderivatives) of periodic functions as they are
calculated and plotted by the computer.

We begin by establishing some language to describe the functions we will
study. A function y = f(x) is said to be p-periodic, provided there exists a
positive real number p such that for every real number x,

f(x+ p) = f(x)

The smallest positive p such that f is p-periodic is called the period of
f . For example, the sine and cosine functions are 2π-periodic. We will do
some experiments with sines and cosines and with some functions which are
derived from them.

Exercise 1: What is the period of each of the six trigonometric functions?

199

200 CHAPTER 12. EXPERIMENTS IN PERIODICITY

y

x

Fig. 12.1: A periodic function

Question 1: Using the trigonometric functions as building blocks, make
new functions: by adding, multiplying, composing, etc. [An intriguing one
to try is sin(x+cos(x)).] Use a graphing utility (for example the cartesian
function plotter in calcwin) to check your new functions for periodic-
ity.

Question 2: You can also make new functions from old by differentiat-
ing and antidifferentiating. Try these calculus operations on some of your
examples of periodic functions from question 1. Can you predict when a
new function will again be periodic? If the new function is periodic, can you
predict its period?

As you start thinking about trying to support some of your findings in
questions 1 and 2, you should think geometrically, as well as algebraically.
Specifically, when you think about adding functions, or multiplying by con-
stants, think of adding y-coordinates or about scaling x or y. Similarly, when
you think about the derivative, think about slope as well as about differen-
tiation.

Exercise 2: Show that the derivative of a periodic function is periodic, with
the same period. Give two arguments, a formal one using differentiation and
an informal one using slopes.

The antiderivative has a geometric representation too, and we’re going
to make heavy use of it. By the fundamental theorem of calculus, a contin-
uous function f always has an antiderivative, namely one given by an area
accumulation function.

12.1. INTRODUCTION 201

For any real number a, we define an area accumulation
function A for f whose value A(x) is the signed area between
the graph of f and the x-axis over the interval from a to x.

Here signed means that regions below the x-axis contribute a negative amount,
above give a positive contribution. (We can even give meaning to A(x) for
x < a by taking the negative of the signed area between the graph and the
x-axis from x to a.)

We will use the program integrator/antiderivative plotter in
calcwin to investigate area accumulation functions. The next section will
walk you through the software for some particular functions, but now we lay
out some of the questions you will be exploring using the program. At this
point, you should think the questions through without using the computer.
Later, you should return to the questions and use the computer to try many
examples.

As you probably recall from calculus, a function can have many an-
tiderivatives. In fact, you can produce many different area accumulation
functions by varying your choice of the starting point a.

Question 3: Examine the area accumulation function for some of your
examples of periodic functions. Observe the effect of varying the starting
point a. If your function f(x) is positive for x’s near a, what is the effect
on A(x) of making a larger? smaller? What about if f(x) is negative near
a? If you start with a periodic function, is the area accumulation function
periodic? Can you make it periodic by adjusting the choice of a?

Obviously changing the function f(x) will change the area accumulation
function too.

Question 4: Suppose you replace f(x) by f(x) +M for some constant M .
If f(x) is periodic, is f(x) +M periodic? How does the value of M affect the
area accumulation function?

202 CHAPTER 12. EXPERIMENTS IN PERIODICITY

12.2 Area accumulation using calcwin

In this section we use the program calcwin to look at area accumulation
functions and try to determine periodicity.

12.2.1 Approximating the area accumulation function

• In MS-Windows, double-click on the calcwin icon to run the pro-
grams. From the main menu of programs, double-click on integra-
tor/antiderivative plotter, and then choose the menu option
function/integration. The (default) function in the long yellow
text box labelled y = f(x) reads sin(x). Plot that function [press PLOT
and use the PRESS TO START button in the blue control box]. When
the graphing is complete, press END in the blue control box.

• Now, the computer can estimate the integral of f over the given (de-
fault) interval, [−8, 12]. Click on INTEGRATE (in the lower right
corner of the screen), PRESS TO START, FORWARD MOVE, and
(when the rectangles are plotted) press END. Notice that the Integral
Estimate is −0.99100484.

• To do this calculation more accurately, you can increase the number of
rectangles (currently n = 100) to read, say, n = 200. Make that change

12.2. AREA ACCUMULATION USING CALCWIN 203

y

x

Fig. 12.2: Estimating the integral of y = sin(x) over [−8, 12] with n = 100 subintervals

in the yellow box labeled n in the lower right corner of the screen. Now,
to calculate the integral press INTEGRATE and then the PRESS TO
START button and click on FORWARD MOVE.

Exercise 3: When the plotting is complete, press the END button. You
will see the rectangles, narrower than before, formed below and above the
axis in the region bounded by the curve and the axis. What is the value of
the INTEGRAL ESTIMATE for this function using 200 rectangles?

Exercise 4: With the current setting of n(= 200) rectangles over [−8, 12],
how many rectangles are there per unit of x-axis?

Exercise 5: Continue here with n = 200 rectangles. In this exercise, you
will make a chart showing (a) the integer values of x: −8,−7,−6,−5, . . . , 12,
(b) the number of rectangles from −8 to x for each of these, and (c) the
values of the variable SUM SO FAR that accumulate as x changes. See the
partial chart below (Table 1).

x i SUM SO FAR (≈ A(x))

−8 0
−7
−6
...

12

204 CHAPTER 12. EXPERIMENTS IN PERIODICITY

Table 1: Accumulating sums of rectangle-areas

To do this,

1. Replot the function: press PLOT, and press END when the function
plotting is finished.

2. Press INTEGRATE.

3. In the yellow box labelled STOP at INTEGER i =, enter the number of
rectangles to be plotted as x moves from −8 to −7 (recall your answer
to exercise 4). This will stop the plotting of rectangles at that point.

4. Press FORWARD MOVE. This will give you the integral estimate from
x = −8 to x = −7, which you will now enter in your table under
SUM SO FAR for x = −7. Note that you could have instead used the
FORWARD 1 STEP option and clicked that until the value of x became
−7. 1

y

x

Fig. 12.3: Accumulation of area from x = −8 to x = −7

5. Continue the table by entering the rectangle-number of the next inte-
ger −6 in the yellow box next to STOP at INTEGER i =, pressing
FORWARD MOVE, and recording those values. Do the same for the
rest of the integers (−5, . . . , 11, 12) to complete your table.

1Alternatively, you can leave blank the i = box, click on FORWARD MOVE, and click
on the FREEZE button when you get close to the value of i that you want (and then
adjust by single steps). This is fun, but with faster computers this becomes more difficult!

12.2. AREA ACCUMULATION USING CALCWIN 205

Of course, the readout of SUM SO FAR to any point x is simply the
approximate value of A(x), the area accumulation function beginning
at a = −8 and going to x.

Exercise 6: On a piece of graph paper, draw a sketch of A(x) versus x
using values of SUM SO FAR that you calculated for A(x) over the interval
[−8, 12]. Keep in mind here that your graph can, at best, be fairly rough,
since we are looking at x-values that are somewhat dispersed.

Exercise 7: Now we consider the possible periodicity of A(x). Go back
to the computer and plot the function y = sin(x) again over [−8, 12]. This
time, use n = 2000 subdivision intervals,

• How many rectangles per unit do you get this time?

• What value do you get for A(0)?

• Now go back and approximate the value you get for A(π). (Use the
fact that π ≈ 3.14.) Figure out in advance the value of i that will stop
the integration at 3.14, and enter that in the box labelled STOP AT
INTEGER i =.

• Do the same thing for A(2π), (2π ≈ 6.28). Again, for A(3π) (3π ≈
9.42). Do the same for A(−π) and A(−2π). Fill in the chart below
(Table 2).

• While you’re at it, continue to determine A(12) using these 2000 rectan-
gles. Compare this with the result you got in Exercise 3 using n = 200
rectangles and what we got using n = 100 rectangles previously. The
current value is probably considerable more accurate. Include this in
Table 2.

x i SUM SO FAR (≈ A(x))

−2π
−π
0
π
2π
3π
12 2000

206 CHAPTER 12. EXPERIMENTS IN PERIODICITY

Table 2: Accumulating sums—multiples of π

• Do these results (and your graph in exercise 6) suggest periodicity for
the function A(x)? [Remember that you are only approximating the
actual A(x) here and that you are only making rough approximations
to kπ!] How would you describe what is happening here?

12.2.2 Plotting an antiderivative

Now we use the computer to plot the graph of the area accumulation func-
tion we just explored. If you are still in integrator/antideriv- ative
plotter, then in the menu line at the top of the screen click on antideriva-
tive plotter. If, on the other hand, you are just loading calcwin again,
run integrator/antiderivative plotter, and click on antideriva-
tive (area function) plotter.

1. Press the “f” button at the lower right of the screen, and then click
the PRESS TO START button. The same graph that you used in
the previous section appears in a smaller window at the bottom of the
screen: y = sin(x) over the interval [−8, 12]. Press END in the Plot
Control Window, change the text box labelled Number A(x) Calcula-
tions at the lower right to read 200, and then press the A(x) button
(and PRESS TO START) to see the graph of the computer’s estimate
of A(x). Remember to press END to complete the graph cycle of the
accumulation function.

The computer is actually doing exactly the same calculations here that
it did in the previous program. The only difference is that rather than
drawing rectangles below/above the function, it is now plotting the ac-
cumulated signed area as a numerical function, the area accumulation
function.

2. Now you can check your calculations from exercise 5 by using the scroll
bar at the bottom of the lower graph.

Note on using the scroll bar.

12.2. AREA ACCUMULATION USING CALCWIN 207

< >

Left Arrow Right ArrowSquare

Left Scroll Area Right Scroll Area

Fig. 12.4: The scroll bar

Clicking or holding left/right arrows adjusts the hairline in
very small intervals; clicking or holding on left scroll or right
scroll areas give quicker adjustment. Also, dragging the square
to any position causes the hairline to move to that position.

Notice that the values of Current x, A(x), and f(x) are updated as the
hairline moves in response to the scroll bar.

Since this is calculating antiderivatives in exactly the same way that it
did in the other part of this program, you may have to move slightly
beyond the desired value to get the same reading. For instance, the
value at x = −7 is obtained better when, say, x = −6.99996 . . . rather
than when x = −7.00021

3. Now do the same thing that you did in the previous part to check your
values for A(x) for x = −2π,−π, 0, π, 2π, and 3π. Confirm your work
from Exercise 7.

Exercise 8: You know that − cos(x) is an anti-derivative for sin(x). Does
the graph of A(x) that you see on the screen look exactly like this antideriva-
tive? Explain your answer.

We want to modify our procedure so that the resulting area accumulation
function is precisely the function − cos(x). We are using

A(x) =

∫ x

a

sin(t) dt

One way to change A(x) is by changing the left-endpoint a. We want to
begin modestly by changing a only very slightly, so that we begin with the
graph of f(x) = sin(x) over an interval very nearly the same as the previous
[−8, 12].

208 CHAPTER 12. EXPERIMENTS IN PERIODICITY

Exercise 9: Continuing to use the calcwin program integrator/antiderivative
plotter, choose the antiderivative (area function) plotter, plot
y = sin(x), and set Number A(x) Calculations to 200. Experiment with
the left hand endpoint, a, of the domain of f so that it is close to, but not
equal to, −8. Observe how the graph of the function A(x) differs, if indeed
it does, from what you sketched and plotted previously. For instance, try
a = −8.25, a = −8.5, a = −7.75, a = −7.5, a = −2π (enter “–2pi” precisely
that way). Write a paragraph describing how the graph of the area accumu-
lation function A(x) varies as you change the left endpoint a. Discuss why
this phenomenon occurs.

Exercise 10: Still using f(x) = sin(x), use the computer to find a point a
that comes as close as possible to the place for which the area accumulation
function A(x) equals −cos(x). Can you prove that your empirical choice is
correct?

Compare your results in exercises 9 and 10 to your analysis in question 3.

Question 5: This is a non-computer question. Please do it before you move
on to the next exercise. Suppose you were to alter the function, y = f(x), by
adding a constant to it. For instance, suppose you looked at f(x) = sin(x) +
0.1 and sought its area accumulation function A(x) from some initial point,
for instance a = −8. How do you think this would change the appearance
of the graph of A(x)? Think about this carefully. Sketch some pictures:
first using sin(x) + 0.1 and then considering the similar function sin(x)−0.1.
Carefully justify your assertions here.

Exercise 11: Now continue using integrator/antiderivative plot-
ter, reset a to −8, and plot A(x) using first f(x) = sin(x) + 0.1 and then
f(x) = sin(x)− 0.1. Repeat this for several other additive constants. Verify
your answer to Question 5. If you are not satisfied with the way the graph of
A(x) is framed on the screen, try it again with the Auto-Height Calc option
checked. Is A(x) periodic? Explain your answer.

Look again at your thinking in question 4.

When you have finished using this program, click on the Exit menu at the
top of the screen

12.3. A NEW TYPE OF FUNCTION 209

12.3 A new type of function

Load the calcwin program called cartesian function plotter. Change
the function F to read sin(x + cos(x)). Be sure to type this exactly in this
way, taking x+ cos(x) as the argument of the sine function.

Exercise 12: Plot this function over the region [−8, 12] (set a to −8, change
b to 12). Does this function appear to be periodic? If so, what is your guess
for the value of the period p?

Exercise 12 here begs an answer of “yes.” Certainly, a function of the
form sin(x + K) is 2π-periodic where K is a constant. (Why?) Looking at
the function under consideration, however, you might think that it should
not be periodic, since it is the sine of the quantity x plus something that is
not constant. To study this question further, notice that f is a composition:
the sine function applied to G(x) = x + cos(x). It would be interesting
to plot the function G(x). To do this, click on the G button below the
picture, and change this function to x + cos(x). You should uncheck KEEP
OLD PICTURE and check AUTO-HEIGHT CALC and click on PRESS TO
START.

Question 6: Describe the graph you get. Is this function periodic? Justify
your answer in terms of the shape of the curve G and the heights at which G
“levels out.” Speculate on what might be at work here. What terminology
might you use to describe the function G? Keep the graph on the screen for
the next question.

Question 7: With the graph G from question 6 still on the screen, press the
button F to replot function sin(x+ cos(x)). This time press PLOT and click
to check the box that reads IF CHECKED: KEEP OLD PICTURE. Be sure
AUTO-HEIGHT CALC is not checked, and push the PRESS TO START
button. Now write a careful description of how the shape of the yellow graph
F is affected by the shape of the green graph G.

Exercise 13: Use the definition of a periodic function to prove that f(x) =
sin(x+ cos(x)) is 2π periodic.

210 CHAPTER 12. EXPERIMENTS IN PERIODICITY

If a function is p-periodic, then f(x+ p)− f(x) is always zero. We might
view a function as nearly periodic if the difference is non-zero but constant.
This motivates the following definition. Suppose p > 0. We say a function
f(x) is linearly p-periodic if and only if there exists a real constant M
such that for all x,

f(x+ p) = f(x) +M

The constant M is called the p-translation constant for f .

Exercise 14: Sketch the graph of a continuous linearly p-periodic function
f for which p = 1 and the transition constant M is 0.5.

With this definition in mind, look again at question 6.

Exercise 15: Suppose y = F (x) is continuous and linearly p-periodic. Prove
that its derivative, y = F ′(x), is p-periodic.

12.4 Antiderivatives of periodic functions

In this section we will attempt to characterize those functions that can be
antiderivatives of periodic functions. We begin with a computer example.
Load the calcwin program integrator/antiderivative plotter and
choose antiderivative (area function) plotter.

Exercise 16: Change the function y = f(x) to read sin(x+ cos(x)). Using
the default domain of [−8, 12], plot it and its area accumulation function
A(x). (Auto-Height Calc may be appropriate for A(x).)

1. Notice that while there are occasional places where this A(x) decreases,
it generally has an upward trend to it. Give a short, but careful, ex-
planation as to why this happens.

2. We saw in exercise 11 that a way to change that “upward trend” to a
“downward trend” or even a fairly “level trend” in the graph of A(x)
was to modify the function f by adding or subtracting a constant.
Experiment with this function to produce an A(x) that appears to be

12.4. ANTIDERIVATIVES OF PERIODIC FUNCTIONS 211

periodic. What is the constant, call it Q, that works here? That
is, what value of Q makes the area accumulation function of sin(x +
cos(x)) +Q periodic?

3. This part will be for use in a later section: Switch to the other part
(function/integral) of this program using the pull-down menu at
the top of the screen, change the function back to read sin(x+ cos(x)),
and estimate ∫ 2π

0

f(x) dx.

What value do you get?

4. Try integrating this function over a few other intervals of length 2π.
What do you notice?

Exercise 17: Use the function f(x) = sin(x+cos(x))+Q from the previous
exercise, and reload the antiderivative plotter.

1. If you change the starting point of the graph of f from a = −8 to any
other number, will that change the fact that its antiderivative A(x) is
periodic? Why or why not? Use the computer to experiment here.

2. Use the computer to find a starting point a such that A(x) is never
negative. What is such a point? Within any interval of length p (the
period of f) is there just one such point, or many? As you do this,
think carefully about why you pick the point(s) that you choose.

3. Similarly, find a starting point at which A(x) is never positive. Consider
the same issues here that you did in the previous part. Why do these
starting points work in this way?

Now revert to the left endpoint of a = −8.

Your earlier work (exercise 16) suggested that a p-periodic function whose
area accumulation function A(x) was not periodic could be altered by adding
a constant Q so that the resulting area function was p-periodic. In notation, if

212 CHAPTER 12. EXPERIMENTS IN PERIODICITY

y = f(x) is p-periodic with area function A(x), then there exists a constant Q
such that the (still) p-periodic function f1(x) = f(x)+Q has a p-periodic area
accumulation function, A1(x). While this is “suggested” by your computer
work, the findings of the next section put this on solid ground.

12.5 Finding the periodic antiderivative

Exercise 18: Now we look at another function over the interval [−8, 12]
with the antiderivative plotter. Using that program, change y = f(x)
to read

sin(x+ cos(x+ sin(x)))

and plot this function in the lower window. The picture gives a somewhat
tooth-like appearance.

1. Prove that f(x) is periodic. What is its period p?

2. As you did in exercise 16, experiment with the computer to find a real
constant Q such that sin(x + cos(x + sin(x))) + Q has a periodic area
accumulation function. What value do you get for Q?

3. Letting p be the period you found for the function f , use the computer
program function/integral to calculate∫ p

0

sin(x+ cos(x+ sin(x))) dx,

and keep this value for future use.

4. Try integrating the same function over a couple of different intervals of
length p. What do you observe?

Exercise 19: Repeat exercise 18 for the following functions, and fill in the
values from these and the previous two exercises in Table 3.

1. sin(x+ sin(x+ sin(x)))

12.5. FINDING THE PERIODIC ANTIDERIVATIVE 213

2. cos(x+ sin(x+ cos(2x)))

3. sin(2x+ cos(x+ sin(x)))

Try to find other functions of this type that you feel might be periodic.

f(x) Q Period Integral over a period

sin(x+ cos(x))
sin(x+ cos(x+ sin(x)))
sin(x+ sin(x+ sin(x)))

cos(x+ sin(x+ cos(2x)))
sin(2x+ cos(x+ sin(x)))

Table 3

Question 8: Examine the data is Table 3 and see if you can determine the
relationship, if any, between the constant Q that you add to f to make its
antiderivative p-periodic and the integral over one period of the function f .

Now the goal is mathematical analysis that will put your computer con-
jectures on a solid foundation.

Question 9: If f is a p-periodic function, what can you say about the value
of ∫ x+p

x

f(t) dt

as x varies? Can you prove that what you observed in specific examples holds
in all cases?

Question 10: Suppose f is a p-periodic function. To keep everything nice,
assume that f is defined and continuous for all real numbers. Fix a choice
of a, and let

A1(x) =

∫ x

a

f(t) +Qdt

214 CHAPTER 12. EXPERIMENTS IN PERIODICITY

Can you prove that it’s always possible to choose Q so that A1(x) is p-
periodic? [Hint: Make use of the answer to question 9.]

Exercise 20: Using the theorem that is implied in question 10, check the
results of your work in exercises 16, 18 and 19 (as given in Table 3).

12.6 Further investigation

There are many directions that your further study could take—both com-
puter experiments and pencil and paper investigations. You can, for instance,
characterize p-periodic functions in terms of properties of an antiderivative,
as in the following theorem.

Theorem 1: A continuous function y = f(x) is p-periodic if and only if
any antiderivative R of f is linearly p-periodic.

The functions we have been looking at in the last sections of this chapter
have been made up of compositions of 2π-periodic functions, for instance
f(u) = sin(u), with linearly 2π-periodic functions, as u = g(x) = x+ cos(x),
and we have seen the result to be 2π-periodic. We can make a general
statement of this in Theorem 2.

Theorem 2: If a continuous function y = f(u) is p-periodic in u, and if
u = g(x) is linearly p-periodic with p-translation constant kp, where k is any
integer, then y = f(g(x)) is p-periodic.

See if you can prove these theorems.

Further interesting directions involve speculation as to the nature of p-
periodic functions made up, as we have in this chapter, of sines and cosines
linked together, such as:

y = sin(x+ cos(x+ sin(x+ cos(x+ cos(x)))))

12.6. FURTHER INVESTIGATION 215

Any combination of sines and cosines of this nature gives a different periodic
function (thus generating an infinite class of periodic functions). There are
many fascinating characteristics of such functions, and you may have fun
studying them.

216 CHAPTER 12. EXPERIMENTS IN PERIODICITY

Chapter 13

Iteration to Solve Equations

13.1 Introduction.

In chapter 1 we saw that when a sequence of iterates

x0, f(x0), f(f(x0)), . . .

converges to a limit L, then L is a solution of the equation

f(x) = x.

This suggests that we might try solving an equation g(x) = 0 by rewriting it
in the form

g(x) + x = x

and performing iteration on the function f defined by f(x) = g(x) + x. Any
limit produced in the process, for a specific initial number x0, yields a solution
of the equation g(x) = 0.

We first want to consider how our experience from chapter 1 carries over
when the function g is linear, say g(x) = mx+ b. The function f which gets
iterated is then also linear and has the form

f(x) = (m+ 1)x+ b.

In this situation there are just two possibilities: either the iterates x0, f(x0), f(f(x0)), . . .
converge for every choice of x0 or they converge only when x0 happens to be
a solution of g(x) = 0.

217

218 CHAPTER 13. ITERATION TO SOLVE EQUATIONS

For nonlinear equations the situation is somewhat more complex, since
nonlinear equations may have more than one solution. Quadratic equations
may have as many as two, cubic equations as many as three, and the equation
sin(x) = 0 has infinitely many solutions. Thus there is a strong possibility
that the limit of a convergent iterative process, and therefore the particular
solution which we obtain, may be dependent on the particular initial guess
x0.

Here is a description in pseudocode of a program which treats the equation
g(x) = 2 sin(x)− x = 0 by iterating f(x) = 2 sin(x).

Program: Solver

Input: a function f(x) = 2sin(x), the number n of iterates,

and an initial value x0 = 0.5

Output: the n iterates of f (and thereby a solution

of f(x) = x)

x := x0

PRINT x

FOR i = 1 TO n

y = f(x)

PRINT i, y

x = y

NEXT i

It will be obvious from the graph of y = f(x) that the equation f(x) = x
has exactly three solutions. For the initial value x0 = 0.5 chosen, iteration
of f(x) apparently gives convergence to one of these. You should try other
choices for x0 in order to attempt to get convergence to the other solutions.
Are you successful?

In studying nonlinear functions under iteration, you will find that some
things are similar to the linear case and you will also note some significant
differences: the trick is to clearly sort out the similarities and the differences.
In chapter 2 we saw that a nonlinear (quadratic) f could lead to chaotic
behavior under iteration, but we will concentrate our attention here on ob-
taining convergent behavior when we begin the iterative process close to a
fixed point. We will attempt to extrapolate from our experience with linear
functions in chapter 1. A key observation for thestudy of nonlinearity is that

13.1. INTRODUCTION. 219

any differentiable function looks locally like a linear function. This is more
or less the definition ofdifferentiability: tangent lines are local linear approx-
imations. Our experience in chapter 1 should suggest that the slope of f at
a fixed point has a lot to do with convergence to that point. The following
exercises are designed to test this conjecture.

Exercise 1: Try f(x) = cos(x). Sketch the graphs of y = x, y = cos(x). Do
they meet? If they do, a value of x for which this happens is asolution of
cos(x) = x. Choose some initial values x0 and iterate f . Observe!

Exercise 2: What about f(x) = sin(x)? Sketch the graphs y = x, y =
sin(x); what solution are you looking for? What happens if you iteratehere?
What if f(x) = sin(2x)? Try to explain what happens from your experience
with the iteration of linear functions.

Exercise 3: Find as many solutions of the equation x3 − 2x+ 1 = 0 as you
can by iteration. Try to explain the success or failure of the iterative process
for each of the solutions. Exercise 4: If a is a positive constant (e.g., a = 2)

you can try solving the equation g(x) = x2− a = 0 by iterating the function
f(x) = x2 + x− a. Try this out. How well does it work?

Exercise 5: Try to solve the same equation by instead iterating f(x) = a/x.
After all, if a/x = x then How does the iteration work out for this
function?

Exercise 6: Show that the fixed points of the function f(x) = (x + a/x)/2
are the solutions of the equation x2−a = 0. How well doesiteration work for
f in locating the fixed points? (You will learn in the next section how this
function was obtained.)

Exercise 7: Try f(x) = 2 cos(x). Sketch graphs, and locate a solution of
2 cos(x) = x. What happens when you iterate?

Exercise 8: Did you get a mess? Well, if you choose f(x) = (x+2 cos(x))/2
you are still solving 2 · cos(x) = x. But is this choice more successful?

220 CHAPTER 13. ITERATION TO SOLVE EQUATIONS

13.2 Improving Convergence.

We have seen in the above exercises that the value of the derivative at a fixed
point very much determines the convergence of the iterative process, just as
it it does in the linear case. But if convergence fails, are we without recourse
in calculating precise values for the fixed points?

It turns out that a very simple device will give success in most instances.
Instead of iterating f , we iterate the function

h(x) = λf(x) + (1− λ)x, λ 6= 0,

where λ is a number which we choose at our discretion. This gives a weighted
average (where the weights λ and 1− λ sum to 1) of the function f and the
identity function id(x) = x.

Exercise 9: Show that the fixed points of h are exactly the same as the
fixed points of f . Exercise 10: Find a choice for λ so that iteration will

yield convergence to the fixed point of f(x) = 2x− 1 no matter which initial
value is chosen. Show that there is an optimal choice of λ, one which gives
the most rapid convergence. Exercise 11: For a nonlinear function with

several fixed points, good choices for λ will vary from fixed point to fixed
point. Return to the situation of Exercise 3 and try to find good values for
λ for each of the points where convergence failed before.

We can even automate the choice process for λ. If c is a fixed point of
the function h, most rapid convergence occurs if h′(c) = 0 (at least, this is
true when h is linear). This suggests choosing λ so that this is approximately
true, i.e., if xi−1 is an approximation to a fixed point, we obtain the choice λ
so as to make h′(xi−1) = 0 and then compute the next iterate xi = h(xi−1).
This means that we are changing the choice of λ as we proceed in the process,
which is a new feature, but one which doesn’t really complicate things. In
terms of f this process requires that

λf ′(xi−1) + (1− λ) = 0,

which implies

λ =
1

1− f ′(xi−1)
,

13.3. QUESTIONS TO EXPLORE 221

and

xi = h(xi−1) =
f(xi−1)− xi−1 · f ′(xi−1)

1− f ′(xi−1)
.

Exercise 12: Apply the above scheme to the solution of the equation g(x) =
x2 − 3 = 0, i.e., to the situation where f(x) = x2 + x − 3. How successfulis
it in providing convergence to the solutions of the equation? How does the
solution obtained depend on the initial choice x0?

13.3 Questions to explore

In answering the following questions, you may use some of the examples
provided in the exercises and, even better, use additional examples of your
own invention to demonstrate what you believe is true. Question 1: Under

iteration, what are the most significant similarities and differences between
the linear and nonlinear cases?

Question 2: Under what conditions does the iteration of a function f result
in convergence to a fixed point provided that our starting point is sufficiently
close to that fixed point?

Question 3: Under what conditions does interation fail to converge to a
specific fixed point no matter how close our starting point is to that fixed
point?

Question 4: In relation to the preceding two questions, what are the bor-
derline cases? Can you find new phenomena here which were not present in
the iteration of linear functions?

Question 5: Under what circumstances can the iteration process be mod-
ified to ensure convergence to a given fixed point? Question 6: What can

you say about the rate of convergence to fixed points? Can you give examples
where the convergence is extremely fast or extremely slow? How does the
convergence rate for modified iteration compare with the convergence rate
for simple iteration?

222 CHAPTER 13. ITERATION TO SOLVE EQUATIONS

13.4 Computer programs

13.4.1 TrueBASIC program

Solver

CLEAR

! Iterate the function f(x) = cos(x) n times

DEF f(x) = cos(x)

INPUT PROMPT "What is the initial value of x? ": x

INPUT PROMPT "How many iterations? ": n

PRINT "The initial value chosen was x = "; x

FOR I = 1 to n

LET y = f(x)

Print i, y

LET x = y

NEXT i

END

13.4. COMPUTER PROGRAMS 223

13.4.2 Mathcad program

224 CHAPTER 13. ITERATION TO SOLVE EQUATIONS

Chapter 14

Iteration of Quadratic
Functions

14.1 Introduction

In chapter 1 you iterated a linear function and found out that its behavior
was pretty simple. In this chapter you will iterate quadratic functions and
find that their behavior is not at all simple! What you learned by iterating
linear functions does cast some light on the non-linear case, but you will also
encounter some completely new phenomena. In fact, iteration of quadratic
functions can lead to the the erratic behavior that mathematicians call chaos.

14.2 Some theory

Before you begin your systematic investigation of the iteration of these quadratic
functions, it will be helpful to have some terminology to describe what hap-
pens to points x under iteration of a function f .

A point u is a fixed point if f(u) = u. We can indicate this by

u→ u

A fixed point is an attractor if all nearby points move towards it under
iteration; it is a repeller if all nearby points move away from it. For example,

225

226 CHAPTER 14. ITERATION OF QUADRATIC FUNCTIONS

0 and 1 are fixed points for f(x) = x2. The point 0 is an attractor, since
starting with initial value −1 < x0 < 1, the sequence of iterates converges to
0. The point 1 is a repeller, since starting with an initial value 0 < x0 < 1, the
sequence of iterates coverges to 0, and starting with an initial value 1 < x0
the sequence of iterates diverges to +∞.

A collection of points u1, u2, . . . , uk forms a k-cycle if

f(u1) = u2, f(u2) = u3, . . . , f(uk) = u1

We can indicate this by

u1 → u2 → u3 → . . .→ uk → u1

This is also called a cycle of period k. A cycle of period one is a fixed
point. As for fixed points, a k-cycle can be attracting or repelling depending
on whether nearby points move towards it or away from it under iteration.

Points near an attracting cycle will start swirling around the cycle, getting
closer and closer to it as time goes on.

A point u is preperiodic if it eventually ends up in some cycle. For exam-
ple, 1 is preperiodic for the function f(x) = x2 − 1.

14.3 Iterating f (x) = ax(1− x)

We will start with quadratic functions of the form

f(x) = ax(1− x),

where the parameter a is between 0 and 4. It turns out that these quadrat-
ics are as good (or bad) as any.

We will use two programs to examine this family of quadratic functions.
The first is a simple modification of the program in chapter 1 for iterating
linear functions.

14.3. ITERATING F (X) = AX(1−X) 227

Program: Iterquad

Input: the value of a (0 <=a <=4), the initial value x0, and

the number N of iterations

Output: the N iterates

x := x0

FOR I = 0 to N

PRINT I and x

y := ax(1-x)

x := y

NEXT I

The second program gives a visual picture of iteration. First try this
process by hand: On a piece of graph paper, draw a careful graph of y = f(x)
for a = 1. Add to this the graph of y = x. Choose a value for x0 on the x-axis.
Draw a vertical line from this point to the graph of f(x), draw a horizontal
line from this point to the line y = x, draw a vertical line from this point
to the graph of f(x), then draw a horizontal line to the line y = x, and so
forth. Convince yourself that this geometric process is indeed just iterating
the function. Does your picture resemble a staircase or a cobweb? Compare
your graph with the graph that other students get for different choices of x0.
What if you use a = .5? How about a = 4?

The program itergraph draws a picture like the ones you have just
drawn.

Program: Itergraph

Input: the value of a (0 <=a <=4), the initial value x0, and

the number N of iterations

Output: a graphical representation of the iteration

Set the screen coordinates to be 0 <= x <=1 and 0 <= y <= 1

Draw the line from (0,0) to (1,0) !the x-axis

Draw the line from (0,0) to (0,1) !the y-axis)

Draw the line from (0,0) to (1,1) !the graph of y = x

228 CHAPTER 14. ITERATION OF QUADRATIC FUNCTIONS

!The next three lines draw the graph of f

FOR i = 1 TO 100

Draw the line segment from ((i-1)/100, f((i-1)/100))

to (i/100, f(i/100))

NEXT i

!The next lines draw the cobweb

x := x0

FOR i = 1 TO N

y := f(x)

Draw the line segment from (x,x) to (x,y)

Draw the line segment from (x,y) to (y,y)

x := y

Next i

Use the programs iterquad and/or itergraph to help answer the following
questions.

Question 1: Choose a = 1.6 and try different choices for the initial value
x0. Can you find an attracting fixed point? A repelling fixed point? Which
initial values converge to the attracting fixed point? Which go off to infinity?

Question 2: Repeat the previous question with a = 2.

Question 3: Find a value of a which gives a 2-cycle. Does this behavior
depend on the initial value? Can you find many values for a which result in
this behavior?

Question 4: Can you find values of a which give k-cycles for different values
of k? Which values of k seem to appear? In each case, does the choice of
initial value matter?

(Try values of a between 3.4 and 3.6, as well as values between 3.6 and
4.)

Question 5: If a value of a gives a cycle, is it always an attracting cycle?
Can you find any repelling cycles? Why are they hard to find?

Question 6: Find a function which gives a sequence which fails to exhibit
any regular behavior (i.e. is “chaotic”) even after a very large number of
iterations. What, if any, is the effect of the initial value?

14.4. THE FEIGENBAUM DIAGRAM 229

Question 7: Can you give an analytic argument to support any of your
findings? Here are some suggestions to get you started. Sketch the graphs
of these quadratics for a = 1, a = 2 and a few other choices of a > 0. How
does the graph change as you vary a? What happens to the zeroes of these
functions? The critical points? Next, find the fixed points of f(x) = ax(1−x)
in terms of a. Slope was important for the analysis of the iteration of linear
functions, so consider the derivative of f(x). For which values of a would you
expect convergence to each of your fixed points? Does this behavior depend
on the initial value? Which initial values result in convergence to which fixed
point? Which result in divergence? Can you prove any of your findings?

14.4 The Feigenbaum Diagram

In the previous section you analyzed the behavior of the function ax(1− x)
for various individual values of a. We will now do this in a more organized
fashion by looking at the long-term behavior of the iterates all at once. The
following program starts with a value of a and iterates the function ax(1 −
x), ignoring the first fifty iterates x1, x2, . . . , x50 and printing the next fifty
iterates x51, x52, . . . , x100 on the vertical axis above that value of a. The
program then advances to the next value of a. (The parameter a varies beteen
1 and 4.) The picture that this program produces is called the “Feigenbaum
diagram”.

Program: Diagram

Input: none

Output: the Feigenbaum diagram for f(x) = ax(1-x), 0 <= a <= 4

Set the screen coordinates to be 0 <= x <= 1 and 0 <= y <=1

Let f(x) = ax(1-x)

FOR i = 1 to 100

a := 4i/100 !this varies the parameter a from 0 to 4

x := .1 !choose some initial value

!The next three lines find the first fifty iterates

FOR j = 1 TO 50

x := f(x)

230 CHAPTER 14. ITERATION OF QUADRATIC FUNCTIONS

NEXT j

!The next lines plot the last fifty iterates

FOR j = 51 to 100

Plot the point (a, x)

x = f(x)

Next j

Next i !Go on to the next value of a

Question 9: On the left side of the Feigenbaum diagram there is a single
curve. This represents the fact that the function has a single attracting fixed
point. When the curve splits into two curves, the function has a two-cycle,
and the point jumps back and forth. What is the motion of the point when
the curve splits into four curves? Into eight? Can you describe the limiting
set of this bifurcation, and the motion of the point on it?

Question 10: On the right side of the Feigenbaum diagram you should be
able to see a “period three window”, a place where there is a white band
crossed by three curves. Can you find any other windows? What are their
periods? Is there any pattern here? What is the relation between these
windows and the k-cycles from Question 4?

14.5 Examining chaos

Iteration of the function f(x) = 4x(1−x) produces chaotic behavior. Iterate
this function using almost any starting value, and you’ll see no pattern in
the output. It certainly looks like chaos! Although there is no mathematical
definition of chaos, there are some properties of chaotic systems that are
more precise than just saying that there’s no pattern. These properties are
sensitive dependence on initial conditions, and some underlying order. We’ll
explore them in this section.

14.5.1 Sensitive dependence on initial conditions

A chaotic system has the following property: No matter how close two initial
values are, they eventually diverge. We can explore this by modifying the
program iterquad to do two initial values at once.

14.5. EXAMINING CHAOS 231

Program: Iterquad-two

Input: two initial values, x1 and x2, between 0 and 1,

the number N of iterations

Output: two sets of iterates

FOR I = 0 TO N

Print I, x1 and x2.

y1 := 4x1(1-x1)

y2 := 4x2(1-x2)

x1 := y1

x2 := y2

NEXT I

Question 11: Start with two initial values that agree to one decimal place;
do they eventually diverge? Now take two initial values that agree to two
decimal places, and so forth. What happens?

Question 12: Give a precise mathematical description of “sensitive depen-
dence on initial conditions.”

14.5.2 Chaos is not random: histograms

Now we come to a surprising feature of iteration of 4x(1 − x): Although
the sequence of iterates of a typical point looks completely unpredictable, it
turns out that this sequence is not at all random!

Question 13: What does it mean to say that a sequence of numbers x1, x2, . . .
is random?

We will investigate how well the iterates of 4x(1 − x) move around the
unit interval. For instance, starting with an initial value between 0 and 1
and iterating it, how often is the result less than 1/2? Greater than 1/2?
The following program helps answer this question:

Program: Random

232 CHAPTER 14. ITERATION OF QUADRATIC FUNCTIONS

Input: initial value of x between 0 and 1, number N of iterations

of f(x) = 4x(1-x)

Output: the number of iterates < 1/2, the number >= 1/2

N1 := 0

N2 := 0

FOR I =1 TO N

IF 0 <= x < 1/2 THEN N1 := N1 + 1

IF 1/2 <= x <= 1 THEN N2 := N2 + 1

y := 4x(1-x)

x := y

NEXT I

Print ‘‘The number of values between 0 and 1/2 is" N1

Print ‘‘The number of values between 1/2 and 1 is" N2

Question 14: Try the program starting with different initial values. (Take
N to be large, say 1000.) Is there any difference between the number of
iterates between 0 and 1/2, and the number of iterates between 1/2 and 1?
Are these results consistent with randomness?

Question 15: Now modify the program to count the number of iterates
between 0 and 1/3, 1/3 and 2/3, and 2/3 and 1. (You will have to add some
more lines to the program.) Repeat the same experiment. Are there any
differences?

Try other divisions of the interval [0, 1], for instance into ninths. Do more
patterns occur?

Question 16: Among the various divisions of [0, 1] into intervals, is it true
that some interval doesn’t contain any iterates, even after a large number of
iterations? If this never happens (i.e., if all intervals are eventually hit by
some iterate), then the system is called “transitive”.

Question 17: From the first part of this chapter you may remember some
other values of a for which the function f(x) = ax(1− x) seemed to produce
chaotic behavior. Repeat questions 14–16 for these values of a.

14.6. THE TENT AND SAWTOOTH FUNCTIONS 233

14.5.3 Chaos is not random: repelling periodic points

There is another way in which the function f(x) = 4x(1− x) is not random:
It has lots of periodic points! Of course 0 and 1 are fixed points, but these
are rather boring. A surprise is that the point [sin(π/5)]2 has period 2.

Exercise 1: Verify this. (You have to use the exact value [sin(π/5)]2 and
not a decimal approximation; a computer algebra program makes this task
easier.)

Why didn’t we see this before? The answer is that it is a repelling peri-
odic point, so any finite decimal approximation which we could feed into a
computer eventually gets thrown off.

Exercise 2: Using a calculator, find the decimal expansion of [sin(π/5)]2 to
as many places as you can, and calculate its iterates using f . For how many
iterations does it look like a cycle of period two?

There are many other repelling periodic points, of all possible periods,
and in fact they form a “dense” subset of the interval.

In the next section we’ll get some ideas about how to find them.

14.6 The tent and sawtooth functions

Two other functions which have chaotic behavior like that of f(x) = 4x(1−x)
are the “tent function” and the “sawtooth function.”

The tent function T (x) is defined by

T (x) =

{
2x if 0 ≤ x ≤ 1/2
2(1− x) if 1/2 ≤ x ≤ 1

The sawtooth function S(x) is defined by

S(x) =

{
2x if 0 ≤ x < 1/2
2x− 1 if 1/2 ≤ x ≤ 1

234 CHAPTER 14. ITERATION OF QUADRATIC FUNCTIONS

Question 18: Sketch a graph of the tent function. Why is it called the
tent function? (This function is also called “stretching and folding,” which
is what happens when dough is kneaded.)

Question 19: Show that the tent function exhibits sensitivity to initial
conditions (Think of it as kneading.)

Question 20: It is easy to work with the tent function by hand: Find
periodic points of period 2, 3, 4, 5 and 6 by choosing some simple fractions
as initial points.

Question 21: Sketch a graph of the sawtooth function. The sawtooth
function is called “stretch, cut and paste”; can you see why?

Question 22: Show that the sawtooth function exhibits sensitivity to initial
conditions.

Question 23: Find all periodic points for the sawtooth function. (Hint:
One way of understanding the sawtooth function is to write numbers in their
binary representation.)

Question 24: The relation between the tent and sawtooth functions is given
by

T (T (x)) = T (S(x))

for any 0 ≤ x ≤ 1. Verify this.

Question 25: Use this relation to find all periodic points for the tent func-
tion.

14.7 Conjugacy

It’s relatively easy to find periodic points for the tent and sawtooth

functions. On the other hand, it is hard to find periodic points for the

function f(x) = 4x(1 − x) because they can’t be expressed with finite
decimals.

14.8. ITERATING OTHER FUNCTIONS 235

If there were a way to translate back and forth between the difficult

function and the easier ones, it would lead us to these elusive periodic

points.

This translation back and forth is provided by the notion of conjugacy.
In fact, if we let

h(x) = sin2(πx/2)

then
fk(h(x)) = h(T k(x))

for any k. Thus iterating f is equivalent to iterating T , which is much easier
to understand. You can read more about this in Fractals for the Classroom
by Peitgen et al, Chapter 10.

14.8 Iterating other functions

There are some other functions we could look at rather than the function
f(x) = ax(1−x). If you are working with enough people, divide into groups,
each group taking one of the functions below. Compare and contrast their
behavior under iteration to the function ax(1− x).

1. a− (x−
√
a)2

2. x2 − a

3. a sin(x)

4. x4 − a

14.9 Listening to chaos

You can easily modify the first program of this chapter so that rather than
printing the value of an iterate x, the program generates a note with pitch
x. (For details on how to do this, see the specific programs at the end of

236 CHAPTER 14. ITERATION OF QUADRATIC FUNCTIONS

this chapter.) What does does an attractor sound like? A two-cycle? A
four-cycle? Chaos? (Drive your classmates crazy!)

Program: Music

Input: an initial value x0 !try x0 = .1

Output: the sound of iterates of f(x) = 4x(1-x)

x := x0

FOR I = 0 TO 100

Play the note with pitch x for a short period of time

Brief moment of silence

y := 4x(1-x)

x := y

NEXT I

14.10. COMPUTER PROGRAMS 237

14.10 Computer Programs

14.10.1 True BASIC programs

Program: Iterquad

!Program iterates f(x) = Ax(1-x)

PRINT "Choose A, 0 <= A <= 4"

INPUT A

DEF FNF (x) = A*x*(1-x)

PRINT "Choose the initial value"

INPUT x0

PRINT "Choose the number of iterations"

INPUT n

!This part iterates the function

PRINT "The iterates are:"

LET x = x0

FOR i = 1 TO n

LET y = FNF(x)

PRINT x,

LET x = y

238 CHAPTER 14. ITERATION OF QUADRATIC FUNCTIONS

NEXT i

END

Program: Itergraf

!Graphical iteration of f(x) = Ax(1 - x)

set window -.1, 1.1, -.1, 1.1

PRINT "Choose the parameter A, 0 <= A <= 4"

INPUT A

DEF fnf(x) = A*x*(1 - x)

PRINT "Choose the initial value 0 <= x0 <= 1"

INPUT x0

PRINT "Choose the number of iterations"

INPUT n

!This part draws axes and the line y = x.

plot lines: -.1, -.1; 1,1

plot lines: 0, -.1; 0, .1

plot lines: -.1,0; 1,0

14.10. COMPUTER PROGRAMS 239

!This part draws the graph of y = f(x).

LET a = -.1

FOR j = 1 TO 110

LET delta =.01

plot lines: a, FNF(a) ; a + delta, FNF(a + delta)

LET a = a + delta

NEXT j

!this part draws the cobwebs

LET x = x0

FOR i = 1 TO n

LET y = FNF(x)

plot lines: x,x ; x,y

plot lines: x,y ; y,y

LET x = y

NEXT i

END

Program: Diagram

240 CHAPTER 14. ITERATION OF QUADRATIC FUNCTIONS

!The Feigenbaum Diagram for f(x) = Ax(1 - x)

!The vertical axis shows the values of the iterates

!The horizontal axis shows values of A between 0 and 4

SET WINDOW -.2, 4.5, -.2, 1.2

DEF fnf(x) = A*x*(1 - x)

!This part draws axes

PLOT LINES: 0, -.1; 0, 1.2

PLOT LINES: -.1,0; 4.5,0

!The outside loop (indexed by i) varies A

!The inside loop (indexed by j) computes 100 iterates of f(x) = Ax(1 - x)

FOR i = 1 to 100

LET A = 4*i/100

LET x = .1

FOR j = 1 TO 100

LET x = fnf(x)

!Only the last 50 iterates are plotted

!The plot is a tiny line, not a dot, to be more visible

14.10. COMPUTER PROGRAMS 241

IF j > 49 THEN plot lines: A, x; A + .001, x

NEXT j

NEXT i

END

Program: Iterqua2

!Look at dependence on initial conditions of f(x) = 4x(1 - x)

PRINT "Choose initial value of x1, 0 <= x1 <= 1"

INPUT x1

PRINT "Choose initial value of x2, 0 <= x2 <= 1"

INPUT x2

PRINT "Choose the number of iterations"

INPUT n

PRINT "The iterates are"

FOR i = 1 TO n

PRINT i, x1, x2

LET y1 = 4*x1*(1 - x1)

LET y2 = 4*x2*(1 - x2)

LET x1 = y1

LET x2 = y2

242 CHAPTER 14. ITERATION OF QUADRATIC FUNCTIONS

NEXT i

END

Program: Transiti

!This program looks at transitivity of f(x)=4x(1-x)

PRINT "Choose initial value of x, 0 <= x <= 1"

INPUT x

PRINT "Choose target value z, 0 <= z <= 1"

INPUT z

PRINT "Choose allowable difference d"

INPUT d

LET i = 0

DO WHILE abs(x - z) > d

LET y = 4*x*(1 - x)

LET x = y

LET i = i + 1

LOOP

PRINT "i= "; i; " x= "; x; " target= "; z

END

14.10. COMPUTER PROGRAMS 243

Program: Random

!This program looks atrandomness of f(x)=4x(1 - x)

PRINT "Choose initial value of x, 0 <= x0 <= 1"

INPUT x0

PRINT "Choose the number of iterations"

INPUT n

LET n1 = 0

LET n2 = 0

LET x = x0

LET i = 0

FOR i = 1 to n

IF x < (1/2) THEN

LET n1 = n1 + 1

ELSE

LET n2 = n2 + 1

END IF

LET y = 4*x*(1 - x)

LET x = y

NEXT i

PRINT "The number of values between 0 and 1/2 is "; n1

244 CHAPTER 14. ITERATION OF QUADRATIC FUNCTIONS

PRINT "The number of values between 1/2 and 1 is "; n2

END

Program: Music

!The sound of iterating f(x) = 4x(1 - x)

PRINT "How many notes would you like?"

INPUT n

LET x = .1

FOR i = 1 TO n

sound 40 + 500*x, 3 !frequency (pitch) 40 + 500x for 3 seconds

sound 32767, 3 !silence for 1 second

LET y = 4*x*(1-x)

LET x = y

NEXT i

END

Note: The duration (set equal to 3 seconds in the program) must be changed
depending on how fast the computer is. The frequency 32767 is silence, and
produces a break between notes.

Chapter 15

Iterated Linear Maps in the
Plane

15.1 Introduction

In this chapter we consider some properties of linear maps in the plane. We
will represent linear maps by matrices. It turns out that matrices can be
multiplied, and iteration of a linear map is just repeated matrix multiplica-
tion.

As you work through this chapter you will:

• Learn matrix notation for a linear map;

• Examine typical examples of what happens when you iterate a linear
map in the plane; and

• See the emergence of a special direction and number associated with a
matrix: the largest eigenvalue, and its corresponding eigenvector.

The notion of eigenvector of a linear map is an extremely important one.
You will encounter it throughout pure and applied mathematics.

245

246 CHAPTER 15. ITERATED LINEAR MAPS IN THE PLANE

15.2 Multiplying matrices

“Map” or “mapping” is a synonym for “function.” But when we speak of
linear maps in the plane, we mean a more restricted notion than the definition
of linear function we used in chapter 1. A function

f(x) = ax+ b

in this setting is called an affine map. A linear map is one where the constant
term b = 0. You already know what happens when you iterate a linear map
on the line (think of it as the x coordinate axis). If we write xn+1 = f(xn),
as usual, then for a linear map

xn+1 = axn (15.1)

The result of iterating a linear map on the line depends entirely on whether
the constant a is such that |a| > 1, |a| = 1, or |a| < 1. The sequence of x’s
that you get either grows in magnitude, stays the same magnitude, or decays
in magnitude (assuming you don’t start with an initial x which is zero). You
can easily picture how this sequence looks on the line.

The situation gets a lot more complicated when you have two input vari-
ables and two output variables. In this case a linear function involves four
constant coefficients instead of one:

f(x, y) = (a11x+ a12 y, a21x+ a22 y).

If we write (xn+1, yn+1) = f(xn, yn), then we have

xn+1 = a11xn + a12 yn

yn+1 = a21xn + a22 yn (15.2)

The sequence of (xn, yn)’s that you get when you iterate this linear function
could be pictured as a sequence of points in the Cartesian coordinate plane,
but what does this sequence of points look like? That is the question we are
investigating.

Exercise 1: Choose some values for the four constants called aij in equation
(15.2) and work out a few examples. Plot the sequence of points in the plane

15.2. MULTIPLYING MATRICES 247

(x0, y0), (x1, y1), (x2, y2), . . . for each choice you make, starting with some
convenient choice of (x0, y0).

You will find, of course, that any point (xn, yn) in the plane gets mapped
to another point (xn+1, yn+1) in the plane, but it may be hard to say any-
thing more illuminating, unless you pick particularly simple values for the
constants. Those cases which are simple enough to understand right away
are important to know about, though.

Exercise 2: If you haven’t already, try the map

xn+1 = xn

yn+1 = 2 yn

(Check your understanding of the notation by identifying each of a11, a12,
a21 and a22 in this case.) Find some more examples of the map given in
equation (15.2) which seem simple. Plot typical sequences of points in the
plane generated by these simple examples, starting from some convenient
(x0, y0).

A common notation for the map in equation (15.2) is(
xn+1

yn+1

)
=

(
a11 a12
a21 a22

)(
xn
yn

)
(15.3)

If you want to know what equation (15.3) means, look at equation (15.2). It
means exactly that. If you are unfamiliar with this notation, compare the
two versions and practice on some specific examples until you can look at
one and translate it into the other easily.

Equation (15.3) is sometimes also written

Xn+1 = AXn . (15.4)

In this compressed notation, the Xn+1 on the left really stands for the two
quantities xn+1 and yn+1. It is a vector, which for our purpose here means a
column of two numbers:

Xn+1 =

(
xn+1

yn+1

)
.

248 CHAPTER 15. ITERATED LINEAR MAPS IN THE PLANE

(If we’re thinking of Xn+1 as a point in the plane, we’ll write (xn+1, yn+1). If
we want to save space but emphasize that we’re thinking of Xn+1 as a column
vector, we’ll use square brackets and write [xn+1, yn+1].) Similarly, Xn stands
for the column vector consisting of the two numbers xn and yn. Finally, A
represents the array of four constants in equation (15.3). It is a matrix, just
the usual name for such an array. We say A has two rows : (a11, a12) and
(a21, a22), and two columns(

a11
a21

)
and

(
a12
a22

)
.

Notice that the subscripts on the four constants follow a standard pattern:
aij is the number in the ith row and jth column of A. Look back at equations
(15.2) and (15.3) to see what equation (15.4) really means.

Exercise 3: Write the map

xn+1 = xn + 2yn

yn+1 = 3xn − yn

in the form of equation (15.3). Write the map(
xn+1

yn+1

)
=

(
4 −2
−1 1

)(
xn
yn

)
in the form of equation (15.2)

Exercise 4. Write your maps from exercises 1 and 2 in matrix notation.

In equation (15.4) the matrix A appears to “multiply” the vector Xn, and
this operation of the constants in A on the two components of Xn really is
called matrix multiplication. Iterating the linear map is then simply repeated
matrix multiplication. This situation looks suggestively like that in equation
(15.1), but it can’t be that simple. What would be the analogue of the
statement |a| > 1? The matrix A has four numbers in it, and some might be
greater than 1 in magnitude and others less.

15.3. AN EXAMPLE TO START 249

15.3 An Example to Start

The following example is interesting to work through. Let the matrix A be

A =

(
1/5 99/100
1 0

)
. (15.5)

Plot the sequence which starts with (x0, y0) = (1, 1). Try it again, but this
time starting from (1, 0). Try it again from (0, 1). You will find after enough
iterations that for any of these starting points the iteration sequence begins
to look the same in a certain sense. The points in the sequence seem to
converge onto a line and to move along that line, much like the points in the
1-dimensional case of equation (15.1). Confirm this in the following exercise.

Exercise 5: Using the matrix A from equation (15.5) and a choice of (x0, y0),
find a sequence of iterates (xn, yn) using equation(15.3). Look at the sequence
of slopes yn/xn to see that the iterates are converging to some definite line
of slope m. What is m? Look at the sequence of ratios xn+1/xn and yn+1/yn
to see that the effect of the map after many iterations is just scaling by a
certain constant a:

xn+1 = axn

yn+1 = ayn

What is a? This is just like the 1-dimensional map of equation (15.1), but
the line in question is not the x-axis.

If you did exercise 5 by hand, you are probably ready to computerize
the calculation. Here is pseudocode for a program planar1 that does the
necessary computations and plots the iterates.

Program outline: Planar1

Input: 2 X 2 matrix A = [a11, a12; a21, a22]

initial vector X0 = [x0,y0]

Output: 25 iterates Xnew = A*Xold

xold := x0

250 CHAPTER 15. ITERATED LINEAR MAPS IN THE PLANE

yold := y0

FOR iteration = 1 TO 25

xnew := a11 * xold + a12 * yold

ynew := a21 * xold + a22 * yold

PRINT xnew/xold, ynew/yold, ynew/xnew

PLOT (xnew,ynew)

xold := xnew

yold := ynew

NEXT iteration

The program prints the ratios suggested in exercise 5, and also plots the
iterated points in the plane, all for the given intial vector X0 = [x0, y0].

Exercise 6: Use the program to confirm your results for A from equation
(15.5) and for some of your examples from exercises 1 and 2, trying it for
several choices of X0.

Another possibility is to choose many initial X0’s randomly in the square
{(x, y) : |x| ≤ 1, |y| ≤ 1}. and to follow all the X0’s for many iterations.
By taking many random initial points in the same picture, you can examine
how the choice of starting point affects the iteration. planar2 is a program
that randomly chooses 17 initial vectors X0 in the square described above,
then finds 25 iterates of each initial vector, and plots all 442 points. (If your
programming language permits it, you might like to color each of the 17
sequences of iterates differently.) Note that there is nothing special about
the choice of 25 or 17—they’re just convenient values.

Program: Planar2

Input: the 2 X 2 matrix A = [a11, a12; a21, a22]

Output: 25 iterates of each of 17 different initial vectors X0(j)

(for j = 1 to 17)

! Choose 17 random initial vectors

FOR j = 1 TO 17

Choose random numbers x0(j) and y0(j),

-1 <= x0(j), y0(j) <= 1 ! X0(j) = [x0(j), y0(j)]

Plot (x0(j), y0(j))

15.3. AN EXAMPLE TO START 251

xold(j) := x0(j)

yold(j) := y0(j)

NEXT j

! Iterate the function on each of the 17 points

FOR iteration = 1 TO 25

FOR j = 1 to 17

! Apply the function to each of the 17 points

xnew(j) := a11 * xold(j) + a12 * yold(j)

ynew(j) := a21 * xold(j) + a22 * yold(j)

PLOT (xnew(j),ynew(j)) ! Plot all 17 iterates

xold(j) := xnew(j)

yold(j) := ynew(j)

NEXT j

NEXT iteration

Exercise 7: Run planar2 and confirm that the result is something like
Figure 15.1.

From your results with planar2 you can see graphically that this iter-
ation in the plane eventually looks like iteration on the line. The 17 points,
initially chosen randomly, move to a certain line in the plane under iteration
of “multiplication” by A, and on that line they move away from the origin
as if each iteration were multiplication by a number a slightly greater than
1.

Exercise 8: Here is a way to confirm this by using a procedure that is
slightly different from exercises 5 and 6. If the successive points (x1, y1),
(x2, y2), . . . are moving out on a line as if they were being multiplied by
a > 1, then after a while

Xn+1 = (xn+1, yn+1) = AXn = (axn, ayn).

Suppose after every iteration of the function you were to scale Xn+1 by a
positive factor c. In other words, suppose you replaced Xn+1 by

cXn+1 = (cxn+1, cyn+1) = (caxn, cayn).

252 CHAPTER 15. ITERATED LINEAR MAPS IN THE PLANE

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

Fig. 15.1: Iterates obtained using matrix A

If you happen to choose c = 1/a, you would get cXn+1 = Xn, and you would
see the points stay fixed on iteration. If you were to choose c > 1/a, then the
resulting scale factor ca would be larger than 1, and the new points would
move out , away from the origin, on iteration. If you chose c < 1/a, then
the scale factor ca would be less than 1, and the new points would move in,
toward the origin. So, by trial and error, you might determine the scale factor
c that is just right—the points neither move away from the origin nor toward
it; they stay fixed. Then you could conclude the map itself was multiplying
by a = 1/c.

You can alter the program planar2 slightly to permit you to determine
a in this trial and error way. Include the scale factor c as an input, so you can
change it easily. Also, change the definition of xnewj and ynewj as follows

xnewj := c * [a11 * xoldj + a12 * yoldj]

15.3. AN EXAMPLE TO START 253

ynewj := c * [a21 * xoldj + a22 * yoldj]

Keep trying different values for c until you see the initial points stay fixed
(not move out or in). The c that works in this way should be the reciprocal
of the number a you found in a different way in exercises 5 and 6.

The number a is called the largest eigenvalue of A, and the line y = mx
along which the points eventually move on iteration determines a correspond-
ing eigenvector of A of the form X = [u,mu]. Notice that the eigenvector is
not unique; only the “direction” m is unique. (Where is an eigenvector X in
Figure 15.1, for example?)

Linguistic aside: The word “eigen” in German means “own,” as
in one’s own. The mathematical terms eigenvalue and eigenvector
indicate that the value a and a vector determined by the line y =
mx are distinctively associated with the linear map described by
the matrix A. Sometimes the terminology “characteristic value”
and “characteristic vector” is used in English, but eigenvalue and
eigenvector are the standard terms.

This means that iteration of the linear map described by A is eventually
simple: after many iterations, it is just like the 1-dimensional case, only the
effective multiplier a is not obvious, and the line y = mx is also not obvious,
just from knowing A.

It is interesting to repeat the same steps with the matrix B given by

B =

(
0 1

100/99 −20/99

)
This matrix is the inverse of A, denoted A−1. If X1 = AX0, then X0 = BX1.
Multiplying by B just undoes the effect of multiplying by A.

Exercise 9: Try this out for X0 = [x0, y0] and confirm that multiplication
by B undoes multiplication by A.

What happens when you iterate with B? If iterating A just produces
motion along a certain line, won’t B just produce motion backward along

254 CHAPTER 15. ITERATED LINEAR MAPS IN THE PLANE

the same line, since it undoes the action of A? This is in a sense true, but
it is not what you see when you try it. Rather you will see that B produces
expansion (i.e, multiplication by a number greater than 1) along a different
line. That is, B has its own largest eigenvalue, and corresponding direction
(eigenvector), different from the one found before for A. The situation is as
illustrated in Figure 15.2.

−4 −3 −2 −1 0 1 2 3 4
−5

−4

−3

−2

−1

0

1

2

3

4

Fig. 15.2: Iterates obtained using matrix B

Exercise 10: Find the largest eigenvalue and a corresponding eigenvector
for the matrix B. (Note: “largest” here must be understood “in magnitude.”
It is actually a negative number—compare with the case of a linear map on
the line when a < 0.)

15.4. QUESTIONS TO EXPLORE 255

15.4 Questions to explore

Use the computer or hand calculations to investigate the following questions.

Question 1: Try some matrices of your own, perhaps making small changes
in the matrices A or B to start with. Do you always find the same qualitative
behavior that we observed in the examples?

Question 2: Consider the “simple” maps that you invented in exercise
2. Can you say anything about their largest eigenvalues and corresponding
eigenvectors?

Question 3: Here is the matrix of a linear map with a behavior quite
different from our starting example:

A =

(
1 −1
1 1

)
The scaling method suggested in exercise 8 still simplifies the result of iter-
ating this map, though. What seems to be going on here?

Question 4: You have seen that at least some matrices A have special
eigenvectors X such that

AX = aX (15.6)

where a is some number, and aX just means scale each component of X by
multiplying it by a. Assume the components of the eigenvector X are not
both zero, and try solving equation (15.6) for a in terms of the the aij by the
usual methods of algebra. How is this solution related to what you found
numerically? How does this algebraic approach work in other examples?

15.5 Discussion

Most discussions of eigenvectors and eigenvalues begin where we ended in the
last section, with equation (15.6). Frequently, though, the important thing to
understand is the underlying picture, essentially Figure 15.1. In engineering
applications, for example, it may happen that a process is repeated over and

256 CHAPTER 15. ITERATED LINEAR MAPS IN THE PLANE

over, and the engineer may be concerned that nothing should grow out of
control, as the vectors in Figure 15.1 seem to be doing. The design problem
may be to ensure that the largest eigenvalue (in some map describing the
process) be less than one in magnitude.

An amusing example of a different kind is provided by the Fibonacci
numbers (see also chapter 8). These numbers

1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

are the components of vectors found by iterating the map with matrix

A =

(
0 1
1 1

)
starting with X0 = [1, 1]. If you find the largest eigenvalue of this A, you
will have found the approximate ratio of successive Fibonacci numbers. This
number is also called the “golden ratio.”

We have left it for you to discover, by means of equation (15.6), that
eigenvalues are solutions of a quadratic equation and so may be real or com-
plex. In the complex case “largest in magnitude” must refer to the magnitude
of a complex number:

|a+ bi| =
√
a2 + b2.

The situation is further complicated in this case because if there is one com-
plex eigenvalue, then there are two, and they are of equal magnitude (they
are complex conjugates: a + bi and a − bi). Thus neither eigenvalue domi-
nates in iteration, and the picture does not resemble Figure 15.1. You may
also have looked at examples in which there are two real eigenvalues of equal
magnitude. This too is a special case, with a picture unlike Figure 15.1.

Any linear algebra text will treat the eigenvalue problem. If you have a
linear algebra text handy, look also at the Gauss-Seidel method for solving
a linear system of equations. It is an iterative method: convergence of the
method depends on whether or not the “spectral radius” of a certain matrix
is less than one—spectral radius being just another name for the magnitude
of the largest eigenvalue! Not all texts treat the Gauss-Seidel method. A
good one in this context is

• G. Strang, Introduction to Linear Algebra, Wellesley-Cambridge Press,
1993 (see pp. 390-396).

15.6. COMPUTER PROGRAMS 257

15.6 Computer Programs

15.6.1 True BASIC programs

Program: Planar1

dim A(2,2)

set window -10, 10, -10, 10

input x0

input y0

!plot it

plot xold,yold

LET A(1,1) = 1/5

LET A(1,2) = 99/100

LET A(2,1) = 1

LET A(2,2) = 0

LET xold = x0

Let yold = y0

FOR iteration = 1 to 25

! Map vector and plot

LET xnew = A(1,1) * xold + A(1,2) * yold

LET ynew = A(2,1) * xold + A(2,2) * yold

PRINT xnew/xold, ynew/yold, ynew/xnew

PLOT xnew, ynew

! Keep the new vectors for the next iteration

LET xold = xnew

LET yold = ynew

NEXT iteration

END

Program: Planar2

dim x0(17), y0(17), xold(17), yold(17), xnew(17), ynew(17), A(2,2)

258 CHAPTER 15. ITERATED LINEAR MAPS IN THE PLANE

set window -10, 10, -10, 10

!17 initial random vectors in plane

FOR j = 1 to 17

LET X0(j) = 2 * rnd - 1 ! 0 <= rnd <= 1

LET y0(j) = 2 * rnd - 1 ! -1 <= x0, y0 <= 1

LET xold(j) = x0(j)

LET yold(j) = y0(j)

NEXT j

! Plot them

FOR j = 1 to 17

plot x0(j), y0(j)

NEXT j

LET A(1,1) = 1/5

LET A(1,2) = 99/100

LET A(2,1) = 1

LET A(2,2) = 0

FOR iteration = 1 to 25

!map vectors and plot them

FOR j = 1 to 17

LET xnew(j) = A(1,1) * xold(j) + A(1,2) * yold(j)

LET ynew(i) = A(2,1) * xold(j) + A(2,2) * yold(j)

plot xnew(j), ynew(j)

!keep the new vectors for the next iteration

LET xold(j) = xnew(j)

LET yold(j) = ynew(j)

NEXT j

NEXT iteration

END

15.6. COMPUTER PROGRAMS 259

15.6.2 Mathcad program

260 CHAPTER 15. ITERATED LINEAR MAPS IN THE PLANE

15.6.3 Matlab program

Program PLANAR2:

X0=2*rand(2,17)-ones(2,17); X=X0;

A=[1/5 99/100; 1 0];

for i=1:25; X=[A*X X0]; end

plot(X(1,:)’,X(2,:)’,’xg’)

Matlab is a matrix-oriented language: that is why this program can be so
short. It is a little different from the True BASIC program in that X0
and all its iterates are stored under the single name X, then all plotted
together at the end. The ‘xg’ in the plot statement means the points will be
plotted as green x’s in the plane. (You could also have used ‘ob’, blue o’s,
‘+y’, yellow +’s, etc.)

Chapter 16

Euclidean Algorithm for
Complex Integers

16.1 Introduction

From high school you may recall that expanding our number system from the
real numbers to the complex numbers enables us to solve quadratic equations
like x2+1 = 0 that have no real roots. This seems like a small, somewhat ab-
stract problem to solve, but like the rational numbers or irrational numbers,
which also can be viewed as solutions to equations extending the integers,
once we have

√
−1 at hand, countless new worlds are open to us. Physicists

use complex numbers to model and study many physical phenomena like
electrical and magnetic fields, to name two simple ones. More surprising,
perhaps, complex numbers are used to answer questions in number theory
and geometry, areas of mathematics which, at first, seem quite far removed
from them. In this chapter you will

• Calculate with complex numbers;

• Represent complex numbers geometrically;

• Learn about the complex integers; and

• Investigate the Euclidean algorithm for complex integers.

261

262CHAPTER 16. EUCLIDEAN ALGORITHM FOR COMPLEX INTEGERS

16.2 Complex Integers

In this chapter, we will include in our calculations a new number

i =
√
−1.

In other words, i is the number whose square equals −1: i2 = −1. If we
include this number, all sorts of amazing things become possible. For exam-
ple, suppose we want to find Pythagorean triples—integer solutions to the
famous equation

x2 + y2 = z2.

Using i =
√
−1, we can factor the left-hand side of this equation into

(x+ yi)(x− yi) = z2.

One way in which this product can be a square is for both x+ iy and x− iy
to be squares. (Think about the ordinary integers.) So, we can try to find
some numbers of the form u+ iv such that

x+ yi = (u+ vi)2.

Multiplying out the right-hand side, we see that

x+ yi = (u2 − v2) + (2uv)i.

Therefore, we must have that x = u2− v2 and y = 2uv, and this means that

x2 + y2 = (u2 − v2)2 + (2uv)2 = u4 + 2uv + v4 = (u2 + v2)2,

or that z = u2 + v2. So we see that using this approach and letting z =
u2 + v2, we have found expressions for the Pythagorean triple (x, y, z) =
(u2−v2, 2uv, u2 +v2). If we want (x, y, z) to have no common factors so that
the gcd(x, y, z) = 1, we will have to insist that the complex factors (x + yi)
and (x− yi) have no common factors in the set of complex integers. 1

By complex integers, we mean all numbers of the form a + b
√
−1 or

a+bi where a and b are regular integers. The complex integers a+bi are also

1This example is taken from Harold Stark’s introduction to quadratic fields in his book
An Introduction to Number Theory.

16.2. COMPLEX INTEGERS 263

called the Gaussian integers because Gauss was the first person to find the
right way to generalize the Euclidean algorithm for these integers. We are
going to investigate the Euclidean algorithm for the complex integers. We
will need to understand what a greatest common divisor is in this setting, and
we will answer questions like what are the primes? and how do we recognize
them?

Let’s develop some notation to make our discussion easier. We denote
the regular integers, also called rational integers , by Z and the new complex
integers by Z[i]; we call our familiar fractions, or ratios of integers, by the
name rational numbers and denote them by Q. Just as we can add, sub-
tract, and multiply the integers in Z and get answers in Z, so we can add,
subtract, and multiply the complex integers in Z[i] and get answers in Z[i].
These arithmetic operations are performed exactly as they would be for any
binomials, but when multiplying, one simply has to remember the additional
rule that i2 = −1. Now, recall how we obtain all fractions in Q as solutions
to equations of the form ax = b, where a and b are in Z and a 6= 0, so then
x = b/a. In an analogous fashion we obtain the whole set of fractions of Z[i]
by solving all equations of the form

(a+ bi)x = c+ di,

where a+bi and c+di are both complex integers and a+bi 6= 0. Multiplying
both sides of this equation by (a− bi), we see that

(a2 + b2)x = (a− bi)(c+ di) = (ac+ bd) + (ad− bc)i.

Dividing both sides by the rational integer a2 + b2, we get

x =
ac+ bd

a2 + b2
+
ad− bc
a2 + b2

i.

Now notice that ac+bd
a2+b2

and ad−bc
a2+b2

are ordinary fractions in Q; thus, x is of the
form α + β i, with α and β in Q. We denote the set of all such x by Q(i),
that is,

Q(i) = {α + β i : α, β ∈ Q}.
Like the rational numbers in Q, all the numbers in Q(i) can be added, sub-
tracted, multiplied, and divided, and, of course, both addition and multiplica-
tion are commutative. Such collections of numbers, where all the operations
of ordinary arithmetic are valid, are called fields.

264CHAPTER 16. EUCLIDEAN ALGORITHM FOR COMPLEX INTEGERS

Before we describe the Euclidean algorithm for the complex integers, we
need to know a little more about them. First, we picture these numbers in
two dimensions on the Cartesian plane with the number a + bi represented
by the point (a, b). In other words, the x-axis represents the possible real
components of the complex number, and the y-axis represents the complex
component (or imaginary component, as it is also called). In this way, we can
think of the complex integers as points in the plane with integer coordinates.
The complex number a + bi is, therefore, at the distance

√
a2 + b2 from

the origin. We call the distance from the origin of a complex number z
its modulus or absolute value, and write |z|. We define a new quantity,
called the norm of a complex number z, denoted N(z) to be the square of
its modulus. In symbols,

N(a+ bi) = a2 + b2 = (
√
a2 + b2)2 = |a+ ib|2.

We add and multiply complex integers in a very natural way. For example,

(1 + 2i) + (3− 4i) = (1 + 3) + (2− 4)i = 4− 2i

and

(1 + 2i)(3− 4i) = 1(3− 4i) + 2i(3− 4i)

= 3− 4i+ 6i− 8i2

= (3 + 8) + (6− 4)i

= 11 + 2i.

Exercise 1: Write down the general formula for the multiplication of two
complex integers. In other words, (a+ bi)(c+ di) = what?

Exercise 2: (a) Find the norm of (a + bi)(c + di) and show that N(a +
bi)N(c+ di) = N((a+ bi)(c+ di)). (b) If s and t are two complex numbers,
t 6= 0, show that N(s/t) = N(s)/N(t).

Exercise 3: What is the additive inverse of a complex number a+ bi? Find
the solution to the equation 2− 3i+ x = 0.

16.2. COMPLEX INTEGERS 265

Exercise 4: What is the multiplicative inverse of the complex number a+bi?
Find the solution to the equation (2 − 3i)x = 1. [Hint: Look again at the
solution of (a+ bi)x = c+ di above.]

Exercise 5: When will the multiplicative inverse of an integer a+ bi also be
a complex integer? Find all complex integers whose multiplicative inverses
are also integers. Which ordinary integers have multiplicative inverses which
are also integers?

Exercise 6: Find all complex integers which have norm equal to 1. Find
all a + bi such that N(a + bi) = 1. Which ordinary integers have norm (or
absolute value) equal to 1? How do these lists compare with the lists of
invertible elements from exercise 5?

Now, we are ready to consider the theorem called the complex division
algorithm. Notice that, except for the use of the norm N instead of absolute
value, it looks identical to the division algorithm for the ordinary integers.

Complex Division Algorithm. Given two complex integers a and b with
b 6= 0, there are complex integers q and r such that

a = qb+ r

and 0 ≤ N(r) < N(b).

For example, if we want to divide 4+3i into 7+8i, we need to find q = q1+q2i
which will be the complex integer closest to the solution to the equation

7 + 8i = (4 + 3i)x. (16.1)

Let’s first look at an analogue of the one-dimensional geometric argument
that we made in the ordinary integer case (chapter 3).

Recall that, there, for a given divisor b, we divided the real line into
segments with endpoints . . . ,−3b,−2b,−b, 0, b, 2b, 3b, . . . and saw that the
dividend a had to lie in one of those segments. The remainder r was then
the distance from a to the multiple of b we chose and, hence, was always
bounded in size by |b|.

For the complex integer case, we just generalize that same argument to
make it work in a two-dimensional situation. Since we want to replace x

266CHAPTER 16. EUCLIDEAN ALGORITHM FOR COMPLEX INTEGERS

in equation (9.1) by a nearby complex integer, we look at complex integer
multiples of our divisor 4 + 3i, as follows:

(4 + 3i)(q1 + q2i) = (4 + 3i)q1 + (4 + 3i)q2i = (4 + 3i)q1 + (−3 + 4i)q2,

where q1 and q2 are ordinary integers. Note that the line segment from
the origin to 4 + 3i has slope 3/4 and length |4 + 3i| =

√
42 + 32 = 5,

while the line segment from the origin to −3 + 4i has slope −4/3 and length
| − 3 + 4i| =

√
(−3)2 + 42 = 5 . Thus, the two segments form two sides of a

square.

Just as multiples of our divisor in the real case partition the real line into
an infinite number of segments of length b, so do these integer multiples of
4 + 3i and −3 + 4i divide the entire complex plane into an infinite number
of squares of side |4 + 3i|, forming what is called a lattice. The vertices
of the squares are called lattice points . Each vertex of one of these squares
corresponds to a particular pair of multiples (q1, q2), and hence to a particular
complex multiple q1 + q2i of our divisor 4 + 3i. Now our dividend 7 + 8i must
lie in one of these squares, as you can see in the Figure 16.1, and closest to
at least one of the vertices. This is exactly the vertex we pick to give us
the coefficients q1 and q2 that we are looking for in our division algorithm.
Looking at the Figure 16.1, the vertex with coordinates (8, 6) seems closest
to our dividend (which has coordinates (7, 8)). The vertex (8, 6) corresponds
to

8 + 6i = 2(4 + 3i) + 0(−3 + 4i)

so we choose q1 = 2 and q2 = 0 in our example.

As specified by the theorem, the remainder defined by

r = r1 + r2i = (7 + 8i)− (4 + 3i)(q1 + q2i)

= (7 + 81)− (4 + 3i)(2 + 0i)

= −1 + 2i

always has two important properties. First, because all of the coefficients on
the right side of the first equation are ordinary integers r1 and r2, so r is a
complex integer. Second, the length of r1 + r2i is clearly less than the length
of the side of our square; that is, in our case,

0 ≤ | − 1 + 2i| < |3 + 4i| = 5,

16.2. COMPLEX INTEGERS 267

(-3,4)

(1,7)

(5,10)

(9,13)

(12,9)

(8,6)

(4,3)

Real

Imaginary

(7,8)

Fig. 16.1: Lattice formed by b and ib

268CHAPTER 16. EUCLIDEAN ALGORITHM FOR COMPLEX INTEGERS

or, equivalently,

0 ≤ N(−1 + 2i) < N(3 + 4i) = 25.

In general,

0 ≤ N(r) < N(b).

Now let’s see what happens when we look at the problem algebraically.
To find the quotient q, we solve for x by dividing 7 + 8i by 4 + 3i and
rationalizing the denominator:

x =
7 + 8i

4 + 3i
=

(7 + 8i)(4− 3i)

(4 + 3i)(4− 3i)
=

52 + 11i

25
.

Next, we let q1 equal the integer closest to 52/25 = 2 + 2/25, and we let q2
equal the integer closest to 11/25 to get q1 + q2i = 2 + 0i = 2. Once we have
the quotient, we can solve for the remainder as

r = a− bq = (7 + 8i)− (4 + 3i)(2)

and find that r = −1 + 2i. Notice that we are guaranteed that

N(r) = N(−1 + 2i) < N(4 + 3i) = N(b)

because

r

b
=

(−1 + 2i)

(4 + 3i)
=

(7 + 8i)− (4 + 3i)(2)

(4 + 3i)
= c1 + c2i = c

where −.5 ≤ c1 ≤ .5 and −.5 ≤ c2 ≤ .5. Since N(c) = N(c1 + c2i) ≤ 1
4

+ 1
4
<

1
2
, we have that

0 ≤ N(c) =
N(r)

N(b)
< 1

which implies that 0 ≤ N(r) < N(b).

In exactly the same way that we used the division algorithm again and
again for the regular integers to find the greatest common divisor, we can
use this division again and again until our remainder r = 0, and then we will
know that the last non-zero remainder is the greatest common divisor of the
two complex integers we started with.

16.2. COMPLEX INTEGERS 269

We will illustrate the procedure by continuing our example with a = 7+8i
and b = 4 + 3i.

7 + 8i = (4 + 3i)2 + (−1 + 2i)

4 + 3i = (−1 + 2i)(−2i) + i

−1 + 2i = (i)(2 + i) + 0

Notice that at each step, the norm of the non-zero remainder is less than the
norm of the divisor:

N(−1 + 2i) < N(4 + 3i)

N(i) < N(−1 + 2i)

Based on this calculation, we could say that gcd(7 + 8i, 4 + 3i) = i.

On the other hand, we could have chosen our q differently. Look again
at Figure 16.1 to see that the lattice point corresponding to q = 2 + i is also
a plausible choice. With that choice of q, the calculation is as follows:

7 + 8i = (4 + 3i)(2 + i) + (2− 2i)

4 + 3i = (2− 2i)(2i)− i
2− 2i = (−i)(−2− 2i) + 0

Again, we have “proper” remainders at every step:

N(2− 2i) < N(4 + 3i)

N(−i) < N(2− 2i)

In this case, we would like to say that gcd(7 + 8i, 4 + 3i) = −i.

On still another hand, we could have worked with the same q in the
following manner:

7 + 8i = (4 + 3i)(2 + i) + (2− 2i)

4 + 3i = (2− 2i)(i) + (2 + i)

2− 2i = (2 + i)(−i) + 1

2 + i = 1(2 + i) + 0

270CHAPTER 16. EUCLIDEAN ALGORITHM FOR COMPLEX INTEGERS

The remainders are proper in this case too:

N(2− 2i) < N(4 + 3i)

N(2 + i) < N(2− 2i)

N(1) < N(2 + i)

From this calculation, we would like to say that gcd(7 + 8i, 4 + 3i) = 1.

Exercise 7: In light of your answer to exercise 6 above, what is the greatest
common divisor of a = 7 + 8i and b = 4 + 3i, and what is going on here?

Exercise 8: In general, how many different choices for each quotient are
there which still allow the norm of the remainder to be smaller than the
norm of the divisor? Consider the possibilities for q1 + q2i. When will there
be only one choice for q1 + q2i? When will there be 2, 3, 4 or more?

16.3 Questions and discussion

Here is the pseudocode for a program which implements the complex Eu-
clidean algorithm. It is an adaptation of the program euclid1 from chapter
8. The actual program works with the real and imaginary components of
each complex number. Here we write the complex numbers only.

Program outline: Euclid-C

Input: complex integers a and b

Output: their greatest common divisor and no. steps to reach it

k := 0 ! Counts number of steps

v := a

WHILE b <> 0 DO

u := a

v := b

a := b

c := u/v ! c = c1 + c2 i is in Q(i)

! Choose complex integer q "near" c

IF c1 - INT(c1) <= .5 THEN LET c1 = INT(c1)

16.3. QUESTIONS AND DISCUSSION 271

ELSE LET c1 = INT(c1) + 1

IF c2 - INT(c2) <= .5 THEN let c2 = INT(c2)

ELSE let c2 = INT(c2) + 1

q := c1 + c2 i ! q is a complex integer

r := u - vq ! r is a complex integer

b := r

PRINT q, r

k := k + 1

LOOP

PRINT "GCD is"; v ! Last non-zero remainder

PRINT "Number of steps was"; k

END

Try to answer the same questions for this version of the Euclidean algo-
rithm that you answered for the algorithm for ordinary integers.

Question 1: Can you find a bound on the number of steps that the algorithm
takes to finish. The norm N(b), is an obvious rough bound. Can you find a
better bound?

Question 2: Two complex integers are relatively prime if their greatest
common divisor is ±1 or ±i. First, explain, by analogy to the ordinary
inegers, why this definition makes sense. What is the probability that two
randomly chosen complex integers are relatively prime? You can estimate
this probability by selecting a large number, m say, of randomly chosen pairs
of complex integers (with coordinates between 0 and N , say). The number of
relatively prime pairs divided by m will be an estimate of the true proportion
of relatively prime pairs whose coordinates are between 0 and N .

The program proportion below, which is adapted from euclid4 in
chapter 8, will enable you to investigate question 2.

Program outline: Proportion

Input: N > 0 and number m of pairs of complex integers

with coordinates between 0 and N

Output: Proportion of the m pairs that are relatively prime

RANDOMIZE

272CHAPTER 16. EUCLIDEAN ALGORITHM FOR COMPLEX INTEGERS

s := 0 ! s counts relatively prime pairs

FOR j = 1 TO m

Randomly select a pair a,b of complex integers

k := 0

v := a

WHILE b <> 0 DO

u := a

v := b

a := b

c := u/v ! c = c1 + c2 i is in Q(i)

! Choose complex integer q "near" c

IF c1 - INT(c1) <= .5 THEN LET c1 = INT(c1)

ELSE LET c1 = INT(c1) + 1

IF c2 - INT(c2) <= .5 THEN let c2 = INT(c2)

ELSE let c2 = INT(c2) + 1

q := c1 + c2 i ! q is a complex integer

r := u - vq ! r is a complex integer

b := r

k := k + 1

LOOP

IF v = 1 THEN s := s + 1

IF v = -1 THEN s := s + 1

IF v = i THEN s := s + 1

IF v = -i THEN s := s + 1

NEXT j

PRINT s/m ! Proportion of relatively prime pairs

END

Question 3: What are the prime numbers in the complex integers? Is 2
still prime? Are 3, 5, 7, and 11? Can you adapt the sieve method to list all
primes with norm less than or equal to N(11)?

References:

[1] W.K. Buhler. Gauss—A Biographical Study. Springer-Verlag, 1981.

[2] Harvey Cohn. Advanced Number Theory. Dover, 1982.

[3] Harold M. Stark. An Introduction to Number Theory. MIT Press, 1978
(originally published by Markham in 1970).

16.4. COMPUTER PROGRAMS 273

16.4 Computer Programs

16.4.1 True BASIC programs

Program: Euclid-C

PRINT "Enter a = a1 + a2 i"

INPUT a1

INPUT a2

PRINT "Enter b = b1 + b2 i"

INPUT b1

INPUT b2

LET k=0

LET v1 = a1 ! v = a

LET v2 = a2

DO WHILE (b1 <> 0) OR (b2 <> 0) ! While b <> 0

LET u1 = a1 ! u = a

LET u2 = a2

LET v1 = b1 ! v = b

LET v2 = b2

LET a1 = b1 ! a = b

LET a2 = b2

! c = u/v = c1 + c2 i is in Q(i)

LET c1 = (u1 * v1 + u2 * v2) / (v1 ^ 2 + v2 ^ 2)

LET c2 = (u2 * v1 - u1 * v2) / (v1 ^ 2 + v2 ^ 2)

! Replace c by "nearby" complex integer q

IF c1 - INT(c1) <= .5 THEN LET c1 = INT(c1)

ELSE LET c1 = INT(c1) + 1

IF c2 - INT(c2) <= .5 THEN let c2 = INT(c2)

ELSE let c2 = INT(c2) + 1

LET b1 = u1 - (v1 * c1 - v2 * c2) ! r = b1 + b2 i = u - vq

LET b2 = u2 - (v1 * c2 + v2 * c1) ! r is a complex integer

PRINT "q="; c1; "+"; c2; "i"; "r="; b1; "+"; b2; "i"

LET k = k + 1

LOOP

PRINT "GCD is"; v1; "+"; v2; "i"

274CHAPTER 16. EUCLIDEAN ALGORITHM FOR COMPLEX INTEGERS

PRINT "Number of steps was"; k

END

Program: Proportion

RANDOMIZE

! m = number of pairs a, b selected randomly

! N = bound on coeffs of a and b

INPUT N, m

LET s = 0 ! Counts relatively prime pairs

FOR j = 1 TO m

LET a1=INT(1+N*RND ! Randomly choose complex integer a

LET a2=INT(1+N*RND)

LET b1=INT(1+N*RND) ! Randomly choose complex integer b

LET b2=INT(1+N*RND)

LET v1 = a1 ! v = a

LET v2 = a2

DO WHILE (b1 <> 0) OR (b2 <> 0) ! While b <> 0

LET u1 = a1 ! u = a

LET u2 = a2

LET v1 = b1 ! v = b

LET v2 = b2

LET a1 = b1 ! a = b

16.4. COMPUTER PROGRAMS 275

LET a2 = b2

! c = u/v = c1 + c2 i is in Q(i)

LET c1 = (u1 * v1 + u2 * v2) / (v1 ^ 2 + v2 ^ 2)

LET c2 = (u2 * v1 - u1 * v2) / (v1 ^ 2 + v2 ^ 2)

! Replace c by "nearby" complex integer q

IF c1 - INT(c1) <= .5 THEN LET c1 = INT(c1)

ELSE LET c1 = INT(c1) + 1

IF c2 - INT(c2) <= .5 THEN let c2 = INT(c2)

ELSE let c2 = INT(c2) + 1

LET b1 = u1 - (v1 * c1 - v2 * c2) ! r = b1 + b2 i = u - vq

LET b2 = u2 - (v1 * c2 + v2 * c1) ! r is a complex integer

LOOP

! If last nonzero remainder v is 1, -1, i, or -i,

! then a and b are relatively prime

IF (v1=1) AND (v2=0) THEN LET s = s + 1

IF (v1=-1) AND (v2=0) THEN LET s = s + 1

IF (v1=0) AND (v2=1) THEN LET s = s + 1

IF (v1=0) AND (v2=-1) THEN LET s = s + 1

NEXT j

PRINT "Proportion of relatively prime pairs is"; s/m

END

