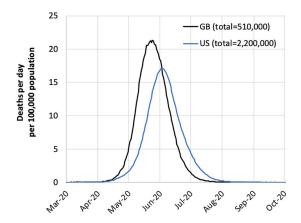
SIR Models for Infectious Diseases

Helmut Knaust


Department of Mathematical Sciences The University of Texas at El Paso El Paso TX 79968-0514

hknaust@utep.edu

March 31, 2020

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A grim forecast:

Source: Imperial College COVID-19 Response Team

The SIR model has three variables.

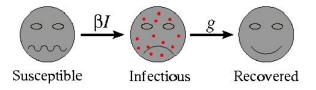
• *S*(*t*) will be the **susceptible** population: those individuals who are not immune to the disease and can get sick.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The SIR model has three variables.

- *S*(*t*) will be the **susceptible** population: those individuals who are not immune to the disease and can get sick.
- *I*(*t*) is the **infectious** population: those individuals who are sick and can spread the disease to the susceptible population.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの


The SIR model has three variables.

- *S*(*t*) will be the **susceptible** population: those individuals who are not immune to the disease and can get sick.
- *I*(*t*) is the **infectious** population: those individuals who are sick and can spread the disease to the susceptible population.
- *R*(*t*) is the **recovered** population: those individuals who have had the disease and are now immune or who have died from the disease. (This also includes vaccinated individuals.)

(日) (日) (日) (日) (日) (日) (日)

Susceptibles will become infectious and then recover.

In the model the population is constant (in our case the population will be 100).

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The SIR system of differential equations:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

•
$$S'(t) = -\beta S(t)I(t)$$

• $I'(t) = \beta S(t)I(t) - \gamma I(t)$

•
$$R(t) = 100 - S(t) - I(t)$$

The SIR system of differential equations:

•
$$S'(t) = -\beta S(t)I(t)$$

•
$$I'(t) = \beta S(t)I(t) - \gamma I(t)$$

•
$$R(t) = 100 - S(t) - I(t)$$

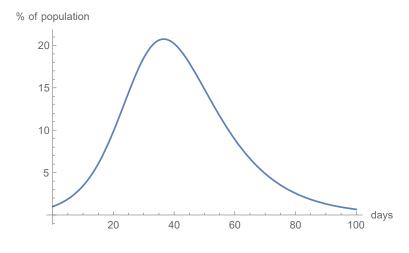
 β is called the **contact rate**: it describes how contagious a disease is.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

The SIR system of differential equations:

•
$$S'(t) = -\beta S(t)I(t)$$

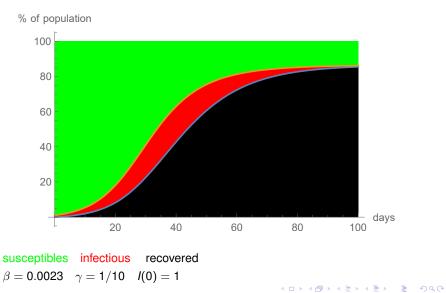
•
$$I'(t) = \beta S(t)I(t) - \gamma I(t)$$


•
$$R(t) = 100 - S(t) - I(t)$$

 β is called the **contact rate**: it describes how contagious a disease is.

 $1/\gamma$ is the **infectious period**, the time period an individual is infectious.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

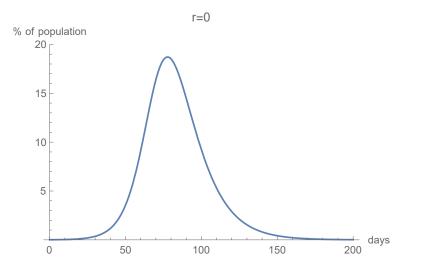

Graph of I(t)

 $\beta = 0.0023$ $\gamma = 1/10$ I(0) = 1

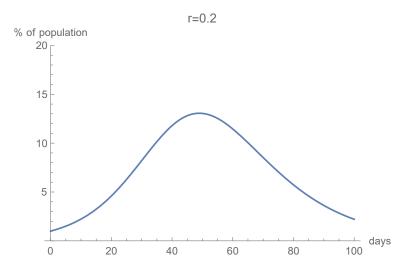
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Graph of I(t)

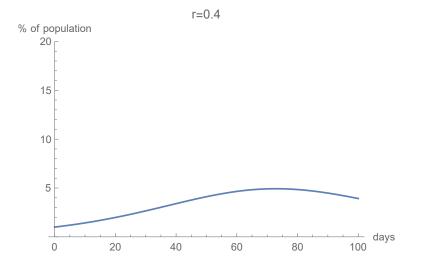
The SIR Model with social distancing:

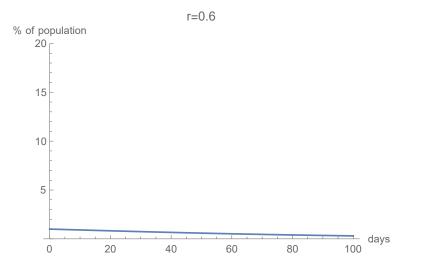

•
$$S'(t) = -\beta(1-r)S(t)I(t)$$

•
$$l'(t) = \beta(1-r)S(t)I(t) - \gamma I(t)$$


•
$$R(t) = 100 - S(t) - I(t)$$

The parameter *r* describes the reduction of the contact rate (in %)


▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ


▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

・ロト・西ト・ヨト・ヨト・日・ つへぐ

・ロト・西ト・ヨト・ヨト・日・ つへぐ

References

- Matthew Keeling, The mathematics of diseases, Plus Magazine, retrieved 3/31/2020.
- See also other articles in *Plus Magazine* about the COVID-19 virus.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@