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Math 2326 Test 3 November 22, 2022

You may use a non-graphing calculator. No cell phones or other internet-capable
devices are permitted. Show your work to receive credit!

This test has 5 problems and an extra credit problem on 6 printed pages. Good
luck!

Problem 1 (20 points) Solve the following initial value problem:
y' -4y +Ty=0 y(0)=2, y(0)=1
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Problem 2 (20 points) For b > 0, and k,m > 0, the differential equation
b k
y'+—=y+—=y=0
m m
describes the motion of a spring.

L. Suppose b= 4, m = 1, and k = 2. Find the general solution of the differential equation
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2. Now suppose b = 4 and m = 1. For which values of & is the spring underdamped?
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Problem 3 (20 points) Consider the following system of non-linear differential equations:
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1. Find the two equilibrium points of this system.
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2. Linearize the system at the equilibrium points, and classify the equilibrium points as
(spiral) sink, (spiral) source, or saddle.
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Problem 4 yA)ints) Consider the following system of non-linear differential equations:

(The system has two equilibrium points: a saddle at the equilibrium point (2,0) and a sink
at the equilibrium point (—3,5).)

1. Sketch the nullclines in the graph below.

2. Sketch the solutions with initial conditions (a) (zo,y0) = (2,—1), (b) (20, %) =
(—1,9), and (c) (zo,y0) = (0,—5) for as long as they stay within the graph below.
'
v = O
3 /X

N = N
NP N
N I A
7{/ \\ ANV <‘B\' /
>

! \?\ e,




Problem 5 (20 points) Consider the two-parameter family of systems of linear differential

equations of the form
a 1

Y!(t) = (b a) Y ().

In the coordinate system below, clearly mark the regions in which the system has a sink,
source, saddle, spiral sink, and spiral source, respectively.
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Extra Credit Problem 6 (20 points) Suppose two similar countries Y and Z are en-
gaged in an arms race. Let y(¢) and z(¢) denote the size of the stockpiles of arms of Y and
Z, respectively.

The situation is modeled by a system of differential equations of the form

Yy =fy,2), 2 =9y, 2)
Suppose the following:

e If country Z’s stockpile is not changing, then any increase in size of Y’s stockpile results

in a decrease in the rate of arms building in country Y. The same is true for country
Z.

e If either country increases its stockpile, the other responds by increasing its rate of
arms production.

What types of equilibrium points are possible for such a system7 Explain carefully!
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