Eric Quezada

Dr. Helmut Knaust
Tuesday 09/13/22
Topic: Induction
Think about teaching children the counting numbers.
Meaning: 1,2,3,4,5,6 etc....
What are some definitions that we have teach kids when they are first learning the counting numbers?

Dedekind (circa 1890s):
Axioms for Natural numbers:

There is a set of $\mathrm{N} \in 1$
that is together nth a successor function
(D1) $\mathrm{S}: \mathrm{N}->\mathrm{N}\{1\}$ (is onto function)
(D2) $\mathrm{S}: \mathrm{N}->\mathrm{N}$ (one to one function)
(D3) If M is the subset that satisfies 1 element M
Wherever there is an element in M then $S(M)$ is an element in M
$\mathrm{M}=\mathrm{N}$
For every number that we are counting there is always a number that will succeed the previous number.

Satisfying 1 is not a successor all other elements in N are successors.
Two distinct elements in N have distinct successors.
D3 is equivalent to D 3 ' let $\mathrm{P}(\mathrm{m})$ be a statement the free variable M draws from N
IF P satisfies, then P is true then M is the $1 \mathrm{P}(\mathrm{S}(\mathrm{m}))$ is true for all elements in N Then $P(m)$ is true for all m elements in N.
\{ Recursive definition: How to add

1) Add " 1 " 0
$\mathrm{K}+1=\mathrm{S}(\mathrm{K})$
2) If we know that $k+n$ is

Then $\mathrm{k}+\mathrm{S}(\mathrm{n})=\mathrm{S}(\mathrm{k}+\mathrm{n})$
\}
(Peamo)
Dedekind: How to use D1 and D2 to show that addition is now defined for all m?
Start with 1.
Next is 2.
So on and so forth.

Logicism:
G. Frege: what is logic?
G. Cantor: what are sets?
R. Dedekind: What are numbers?

Crash: B. Russel

Problem 3.3.

If n is a natural number, then the sum of the first n even numbers is $n^{2}+n$.
I know that $\mathrm{S}=\{2+4+6+\ldots+2 \mathrm{n}\}=\mathrm{n}^{2}+\mathrm{n}$
I want $\mathrm{S}=\{2+4+6+\ldots+2 \mathrm{n}+(2 \mathrm{n}+2)\}=(\mathrm{n}+1)^{2}+(\mathrm{n}+1)$
$=2(1+2+3+\ldots+n)$
$=\frac{2 n(n+1)}{2}$
$=\mathrm{n}(\mathrm{n}+1)$
$=\mathrm{n}^{2}+\mathrm{n}$
Thus, the sum of the first even natural numbers is $n^{2}+n$

Problem 3.4

Let $\mathrm{S}=\{1+3+5+\ldots+2 \mathrm{n}-1\}$
We know that the first n natural numbers $=\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
$=2 * \frac{\mathrm{n}(\mathrm{n}+1)}{2}-\mathrm{n}$
$=\mathrm{n}(\mathrm{n}+1)-\mathrm{n}$
$=\mathrm{n}^{2}+\mathrm{n}-\mathrm{n}$
$=\mathrm{n}^{2}$
Thus, the sum of the first odd natural numbers is n^{2}

