Logic and Proof: Supplement

HELMUT KNAUST

Department of Mathematical Sciences The University of Texas at El Paso El Paso TX 79968-0514

November 4, 2022

The set of natural numbers $\{1, 2, 3, ...\}$ is denoted by \mathbb{N} . The set of integers $\{\ldots, -2, -1, 0, 1, 2, \ldots\}$ is denoted by \mathbb{Z} . \mathbb{Q} denotes the set of rational numbers, \mathbb{R} the set of real numbers.

Intervals are defined as follows for real numbers a < b:

 $(a,b) = \{ x \in \mathbb{R} \mid a < x < b \},$

and
$$[a,b] = \{x \in \mathbb{R} \mid a \le x \le b\}.$$

Half-open intervals and rays such as $[a, \infty)$ or $(-\infty, b)$ are defined analogously. (Note that $\pm \infty$ are not considered to be real numbers.)

1 Miscellaneous

S 1.1 Show that $\sqrt{5}$ is not a rational number. ($\sqrt{5}$ denotes the positive real number whose square equals 5.)

S 1.2 For which values of $k \in \mathbb{N}$ is \sqrt{k} an irrational number?

S 1.3 Suppose two positive real numbers a > b satisfy $\frac{a}{b} = \frac{a+b}{a}$. Show that $\frac{a}{b}$ is an irrational number.

S 1.4 Prove or disprove: There is an irrational number r such that $r^{\sqrt{2}}$ is rational.

S 1.5 Show that there are infinitely many prime numbers.

S 1.6 There are infinitely many prime numbers of the form 4k + 3 for some $k \in \mathbb{N}$, such as 3, 7, 11, 19, 23, 31....

It is also true that there are infinitely many prime numbers of the form 4k + 1 for some $k \in \mathbb{N}$, such as 5, 13, 17, 29, 33.... Strangely, this result seems to be harder to prove than the one above.

S 1.7 If every even natural number > 2 is the sum of two primes, then every odd natural number > 5 is the sum of three primes.

S 1.8 Prove or disprove: If n is a prime number, then n + 7 is not prime.

2 Families of Sets

In this section all sets are subsets of a universal set U.

Let I be a non-empty set, and let A_i be a subset of U for each $i \in I$.

 $\mathcal{F} = \{A_i \mid i \in I\}$ is called a *family of sets*.

Then union and intersection of a family of sets is defined as follows:

$$\bigcup_{i \in I} A_i = \{ x \in U \mid \exists i \in I : x \in A_i \}$$
$$\bigcap_{i \in I} A_i = \{ x \in U \mid \forall i \in I : x \in A_i \}$$

Without explicitly mentioning an index set, one can alternatively define:

$$\bigcup_{A \in \mathcal{F}} A = \{ x \in U \mid \exists A \in \mathcal{F} : x \in A \}$$
$$\bigcap_{A \in \mathcal{F}} A = \{ x \in U \mid \forall A \in \mathcal{F} : x \in A \}$$

Some problems below require the Archimedean property of the real numbers: For all real numbers r there is a natural number n with n > r. This implies that for all real numbers r > 0 there is a natural number n such that $0 < \frac{1}{n} < r$.

S 2.1 Let B be an arbitrary set and let \mathcal{F} be a family of sets.

$$\left(\bigcup_{A\in\mathcal{F}}A\right)\cup B=\bigcup_{A\in\mathcal{F}}(A\cup B)$$

S 2.2 Let *B* be an arbitrary set and let \mathcal{F} be a family of sets.

$$\left(\bigcup_{A\in\mathcal{F}}A\right)\cap B=\bigcup_{A\in\mathcal{F}}(A\cap B)$$

S 2.3 Let \mathcal{F} be a family of sets.

$$U \setminus \left(\bigcup_{A \in \mathcal{F}} A\right) = \bigcap_{A \in \mathcal{F}} (U \setminus A)$$

S 2.4 Find
$$\bigcup_{n \in \mathbb{N}} [0, \frac{1}{n})$$
.

S 2.5 Find
$$\bigcap_{n \in \mathbb{N}} [0, \frac{1}{n}]$$
.

S 2.6 Find
$$\bigcap_{n \in \mathbb{N}} (0, \frac{1}{n})$$
.

S 2.7 Find
$$\bigcap_{n \in \mathbb{N}} (-\frac{1}{n}, \frac{1}{n})$$

S 2.8 Find $\bigcup_{n \in \mathbb{N}} [-n, n]$.

.

S 2.9 Find $\bigcap_{q \in \mathbb{Q}} (\mathbb{R} \setminus \{q\}).$

S 2.10 Let \mathbb{R}^+ denote the set of positive real numbers. Find

$$\bigcup_{r \in \mathbb{R}^+} \{ (x, y) \in \mathbb{R} \times \mathbb{R} \mid (x - r)^2 + y^2 = r^2 \}$$

3 Equivalence Relations and Partitions

S 3.1 Let \sim be an equivalence relation on a set X. Recall that the equivalence class [x] of $x \in X$ is defined as

$$[x] = \{ y \in X \mid x \sim y \}.$$

Show:

1.
$$[x] \neq \emptyset$$
 for all $x \in X$.

2. [x] = [y] or $[x] \cap [y] = \emptyset$ for all $x, y \in X$.

3.
$$\bigcup_{x \in X} [x] = X$$

S 3.2 Discuss the validity of the three properties above, if \sim is assumed to be

- 1. symmetric and transitive, but not reflexive.
- 2. reflexive and symmetric, but not transitive.
- 3. reflexive and transitive, but not symmetric.

Given a set $X \neq \emptyset$, we say $\mathcal{F} \subseteq \mathcal{P}(X)$ is a *partition of* X if

- 1. $A \neq \emptyset$ for all $A \in \mathcal{F}$.
- 2. A = B or $A \cap B = \emptyset$ for all $A, B \in \mathcal{F}$.
- 3. $\bigcup_{A \in \mathcal{F}} A = X.$

S 3.1 then states that, given an equivalence relation on a set X, its equivalence classes form a partition of X.

S 3.3 Let \mathcal{F} be a partition of a set *X*. Show that the relation \approx on *X* defined by

 $x\approx y$ if there is an $A\in \mathcal{F}$ such that $x,y\in A$

is an equivalence relation.

S 3.4 $\mathcal{F} = \{\{1, 2, 3\}, \{4, 5\}, \{6\}\}\$ is a partition on the set $\{1, 2, 3, 4, 5, 6\}$. Compute \approx as defined in **S 3.3**.

S 3.5 Let \mathcal{F} be the set of equivalence classes of an equivalence relation \sim , and let \approx be the equivalence relation induced by \mathcal{F} as defined in **S 3.3**.

Show that $\sim = \approx$.

S 3.6 Let \mathcal{F} be a partition on a set X, and let let \approx be the equivalence relation induced by \mathcal{F} as defined in **S** 3.3. Let \mathcal{G} be the set of equivalence classes of \approx .

Show that $\mathcal{F} = \mathcal{G}$.