Logic and Proof: Supplement

Helmut Knaust

Department of Mathematical Sciences
The University of Texas at El Paso
El Paso TX 79968-0514
November 4, 2022

The set of natural numbers $\{1,2,3, \ldots\}$ is denoted by \mathbb{N}. The set of integers $\{\ldots,-2,-1,0,1,2, \ldots\}$ is denoted by $\mathbb{Z} . \mathbb{Q}$ denotes the set of rational numbers, \mathbb{R} the set of real numbers.

Intervals are defined as follows for real numbers $a<b$:

$$
\begin{gathered}
(a, b)=\{x \in \mathbb{R} \mid a<x<b\} \\
\text { and }[a, b]=\{x \in \mathbb{R} \mid a \leq x \leq b\}
\end{gathered}
$$

Half-open intervals and rays such as $[a, \infty)$ or $(-\infty, b)$ are defined analogously. (Note that $\pm \infty$ are not considered to be real numbers.)

1 Miscellaneous

S 1.1 Show that $\sqrt{5}$ is not a rational number. $(\sqrt{5}$ denotes the positive real number whose square equals 5 .)

S 1.2 For which values of $k \in \mathbb{N}$ is \sqrt{k} an irrational number?

S 1.3 Suppose two positive real numbers $a>b$ satisfy $\frac{a}{b}=\frac{a+b}{a}$. Show that $\frac{a}{b}$ is an irrational number.

S 1.4 Prove or disprove: There is an irrational number r such that $r^{\sqrt{2}}$ is rational.

S 1.5 Show that there are infinitely many prime numbers.

S 1.6 There are infinitely many prime numbers of the form $4 k+3$ for some $k \in \mathbb{N}$, such as $3,7,11,19,23,31 \ldots$.

It is also true that there are infinitely many prime numbers of the form $4 k+1$ for some $k \in \mathbb{N}$, such as $5,13,17,29,33 \ldots$. Strangely, this result seems to be harder to prove than the one above.

S 1.7 If every even natural number >2 is the sum of two primes, then every odd natural number >5 is the sum of three primes.

S 1.8 Prove or disprove: If n is a prime number, then $n+7$ is not prime..

2 Families of Sets

In this section all sets are subsets of a universal set U.
Let I be a non-empty set, and let A_{i} be a subset of U for each $i \in I$.

$$
\mathcal{F}=\left\{A_{i} \mid i \in I\right\} \text { is called a family of sets. }
$$

Then union and intersection of a family of sets is defined as follows:

$$
\begin{aligned}
& \bigcup_{i \in I} A_{i}=\left\{x \in U \mid \exists i \in I: x \in A_{i}\right\} \\
& \bigcap_{i \in I} A_{i}=\left\{x \in U \mid \forall i \in I: x \in A_{i}\right\}
\end{aligned}
$$

Without explicitly mentioning an index set, one can alternatively define:

$$
\begin{aligned}
& \bigcup_{A \in \mathcal{F}} A=\{x \in U \mid \exists A \in \mathcal{F}: x \in A\} \\
& \bigcap_{A \in \mathcal{F}} A=\{x \in U \mid \forall A \in \mathcal{F}: x \in A\}
\end{aligned}
$$

Some problems below require the Archimedean property of the real numbers: For all real numbers r there is a natural number n with $n>r$. This implies that for all real numbers $r>0$ there is a natural number n such that $0<\frac{1}{n}<r$.

S 2.1 Let B be an arbitrary set and let \mathcal{F} be a family of sets.

$$
\left(\bigcup_{A \in \mathcal{F}} A\right) \cup B=\bigcup_{A \in \mathcal{F}}(A \cup B)
$$

S 2.2 Let B be an arbitrary set and let \mathcal{F} be a family of sets.

$$
\left(\bigcup_{A \in \mathcal{F}} A\right) \cap B=\bigcup_{A \in \mathcal{F}}(A \cap B)
$$

S 2.3 Let \mathcal{F} be a family of sets.

$$
U \backslash\left(\bigcup_{A \in \mathcal{F}} A\right)=\bigcap_{A \in \mathcal{F}}(U \backslash A)
$$

S 2.4 Find $\bigcup_{n \in \mathbb{N}}\left[0, \frac{1}{n}\right)$.

S $2.5 \quad$ Find $\bigcap_{n \in \mathbb{N}}\left[0, \frac{1}{n}\right]$.

S 2.6 Find $\bigcap_{n \in \mathbb{N}}\left(0, \frac{1}{n}\right)$.

S 2.7 Find $\bigcap_{n \in \mathbb{N}}\left(-\frac{1}{n}, \frac{1}{n}\right)$

S $2.8 \quad$ Find $\bigcup_{n \in \mathbb{N}}[-n, n]$.

S 2.9 Find $\bigcap_{q \in \mathbb{Q}}(\mathbb{R} \backslash\{q\})$.

S 2.10 Let \mathbb{R}^{+}denote the set of positive real numbers. Find

$$
\bigcup_{r \in \mathbb{R}^{+}}\left\{(x, y) \in \mathbb{R} \times \mathbb{R} \mid(x-r)^{2}+y^{2}=r^{2}\right\} .
$$

3 Equivalence Relations and Partitions

S 3.1 Let \sim be an equivalence relation on a set X. Recall that the equivalence class $[x]$ of $x \in X$ is defined as

$$
[x]=\{y \in X \mid x \sim y\} .
$$

Show:

1. $[x] \neq \emptyset$ for all $x \in X$.
2. $[x]=[y]$ or $[x] \cap[y]=\emptyset$ for all $x, y \in X$.
3. $\bigcup_{x \in X}[x]=X$.

S 3.2 Discuss the validity of the three properties above, if \sim is assumed to be

1. symmetric and transitive, but not reflexive.
2. reflexive and symmetric, but not transitive.
3. reflexive and transitive, but not symmetric.

Given a set $X \neq \emptyset$, we say $\mathcal{F} \subseteq \mathcal{P}(X)$ is a partition of X if

1. $A \neq \emptyset$ for all $A \in \mathcal{F}$.
2. $A=B$ or $A \cap B=\emptyset$ for all $A, B \in \mathcal{F}$.
3. $\bigcup_{A \in \mathcal{F}} A=X$.

S 3.1 then states that, given an equivalence relation on a set X, its equivalence classes form a partition of X.

S 3.3 Let \mathcal{F} be a partition of a set X. Show that the relation \approx on X defined by $x \approx y$ if there is an $A \in \mathcal{F}$ such that $x, y \in A$
is an equivalence relation.

S 3.4 $\mathcal{F}=\{\{1,2,3\},\{4,5\},\{6\}\}$ is a partition on the set $\{1,2,3,4,5,6\}$. Compute \approx as defined in S 3.3.

S 3.5 Let \mathcal{F} be the set of equivalence classes of an equivalence relation \sim, and let \approx be the equivalence relation induced by \mathcal{F} as defined in $\mathbf{S} 3.3$.

Show that $\sim=\approx$.

S 3.6 Let \mathcal{F} be a partition on a set X, and let let \approx be the equivalence relation induced by \mathcal{F} as defined in \mathbf{S} 3.3. Let \mathcal{G} be the set of equivalence classes of \approx.

Show that $\mathcal{F}=\mathcal{G}$.

