1.1 The Natural Numbers

Definition. Richard Dedekind started by giving the following definition of the set of Natural Numbers ${ }^{3}$:

The natural numbers are a set \mathbb{N} containing a special element called 0 , and a function $S: \mathbb{N} \rightarrow \mathbb{N}$ satisfying the following axioms:
(D1) S is injective ${ }^{4}$.
(D2) $S(\mathbb{N})=\mathbb{N} \backslash\{0\} .{ }^{5}$
(D3) If a subset M of \mathbb{N} contains 0 and satisfies $S(M) \subseteq M$, then $M=\mathbb{N}$.

The function S is called the successor function.
The first two axioms describe the process of counting, the third axiom assures the Principle of Induction:

Task 1.1

Let $P(n)$ be a predicate with the set of natural numbers as its domain. If

1. $P(0)$ is true, and
2. $P(S(n))$ is true, whenever $P(n)$ is true,
then $P(n)$ is true for all natural numbers.

[^0]${ }^{4}$ A function $f: A \rightarrow B$ is called injective if for all $a_{1}, a_{2} \in A, f\left(a_{1}\right)=f\left(a_{2}\right)$ implies $a_{1}=a_{2}$.
${ }^{5}$ For a function $f: A \rightarrow B, f(A):=\{b \in B \mid f(a)=b$ for some $a \in A\}$.

Arithmetic Properties. Addition of natural numbers is established recursively in the following way: For a fixed but arbitrary $m \in \mathbb{N}$ we define

$$
\begin{aligned}
m+0 & :=m \\
m+S(n) & :=S(m+n) \quad \text { for all } n \in \mathbb{N}
\end{aligned}
$$

By Axiom (D3), adding n to the fixed m is then defined for all natural numbers n. It is not clear at this point that the recursive formula defines addition in a unique way. This will be proved later in Task 1.21.

Task 1.2

If we set $S(0):=1$, then $S(m)=m+1$ for all natural numbers $m \in \mathbb{N}$.

Use induction for the following:

Task 1.3

Show that addition on \mathbb{N} is associative.

Task 1.4

Show that addition on \mathbb{N} is commutative.

This last task implies in particular that 0 is the (unique) neutral element with respect to addition: $n+0=0+n=n$ holds for all $n \in \mathbb{N}$.

Here is the cancellation law for addition:

Task 1.5

If $m+k=n+k$, then $m=n$.

Multiplication of natural numbers is also defined recursively as follows: For a fixed but arbitrary $m \in \mathbb{N}$ we define

$$
\begin{array}{rlrl}
m \cdot 0 & :=0 \\
m \cdot(n+1) & :=m \cdot n+m & \text { for all } n \in \mathbb{N}
\end{array}
$$

Task 1.22 will show that this recursive formula defines multiplication in a unique manner.

Task 1.6

Show that the following distributive law holds for natural numbers:

$$
(m+n) \cdot k=m \cdot k+n \cdot k .
$$

Task 1.7

Show that 1 is the neutral element with respect to multiplication: For all natural numbers m,

$$
m \cdot 1=1 \cdot m=m .
$$

Task 1.8

Show that multiplication on \mathbb{N} is commutative.

Task 1.9

Show that multiplication on \mathbb{N} is associative.

Task 1.10

Show that multiplication is zero-divisor free:

$$
m \cdot n=0 \text { implies } m=0 \text { or } n=0 .
$$

Finally we can impose a total order ${ }^{6}$ on \mathbb{N} as follows: We say that $m \leq n$, if there is a natural number k, such that $m+k=n$.

Show that " \leq " is indeed a total order:

Task 1.11

" \leq " is reflexive ${ }^{7}$.

Task 1.12

$" \leq "$ is anti-symmetric ${ }^{8}$.

[^1]
Task 1.13

" \leq " is transitive ${ }^{9}$.

Task 1.14

For all $m, n \in \mathbb{N}, m \leq n$ or $n \leq m$.

Show the following two compatibility laws:

Task 1.15

If $m \leq n$, then $m+k \leq n+k$ for all $k \in \mathbb{N}$.

Task 1.16

If $m \leq n$, then $m \cdot k \leq n \cdot k$ for all $k \in \mathbb{N}$.

Last not least, here is the cancellation law for multiplication:

[^2]
Task 1.17

If $m \cdot k=n \cdot k$, then $m=n$ or $k=0$.

Infinite Sets and the Existence of the Set of Natural Numbers. Do natural numbers exist? Following Dedekind, we will say that a set M is infinite, if there is an injective map $f: M \rightarrow M$ that is not surjective ${ }^{10}$.

Task 1.18

Show that the set of natural numbers as defined on p. 2 is infinite.

Thus, the existence of the set of natural numbers implies the existence of infinite sets. In fact, we will show that the converse also holds:

Theorem. If there is an infinite set, then there is a model for the natural numbers.
Proof: Let A be an infinite set. Then there is a function $S: A \rightarrow A$ that is injective, but not surjective. Thus we can find an $a_{0} \in A$ with $a_{0} \notin S(A)$. Let

$$
\mathcal{K}=\left\{B \subseteq A \mid a_{0} \in B \text { and } S(B) \subseteq B\right\}
$$

Note that $A \in \mathcal{K}$, so $\mathcal{K} \neq \emptyset$. We set

$$
N=\bigcap_{B \in \mathcal{K}} B .
$$

Observe that $N \in \mathcal{K}$. Indeed, $a_{0} \in N$, since $a_{0} \in B$ for all $B \in \mathcal{K}$. Also

$$
S(N)=S\left(\bigcap_{B \in \mathcal{K}} B\right) \subseteq \bigcap_{B \in \mathcal{K}} S(B) \subseteq \bigcap_{B \in \mathcal{K}} B=N
$$

[^3]By its definition the set N is thus the smallest element of \mathcal{K}.
Finally we show that N with the function $S: N \rightarrow N$ (as successor function) and a_{0} (in the role of 0) satisfies Axioms (D1)-(D3).
As the restriction of the injective function $S: A \rightarrow A$ to N, the function $S: N \rightarrow N$ is also injective. Thus (D1) is satisfied.

For (D2) we have to show that $S(N)=N \backslash\left\{a_{0}\right\}$. Since $a_{0} \notin S(N)$ and $S(N) \subseteq N$, we obtain that $S(N) \subseteq N \backslash\left\{a_{0}\right\}$. For the remaining subset relation suppose to the contrary that there is a second element missing from the range of N : there is an element $n_{0} \in N$ satisfying $n_{0} \notin S(N)$ and $n_{0} \neq a_{0}$. Set $N_{0}=N \backslash\left\{n_{0}\right\}$. Note that $a_{0} \in N_{0}$ and that $S\left(N_{0}\right) \subseteq N_{0}$. Thus $N_{0} \in \mathcal{K}$. We also know that $N_{0} \varsubsetneqq N$, yielding a contradiction.

Now let $M \subseteq N$, with $a_{0} \in M$, and satisfying $S(M) \subseteq M$. Then $M \in \mathcal{K}$, and thus, again using the minimality of N in \mathcal{K}, it follows that $M \supseteq N$. This proves (D3) and completes the proof.

Task 1.19

Present the proof of this Theorem.

Recursion and Uniqueness. Before we give a proof of the "essential" uniqueness of the natural numbers, we will follow Dedekind and establish the following general Recursion Principle:

Task 1.20

Let A be an arbitrary set, and let $a \in A$ and a function $f: A \rightarrow A$ be given. Then there exists a unique map $\varphi: \mathbb{N} \rightarrow A$ satisfying

1. $\varphi(0)=a$, and
2. $\varphi \circ S=f \circ \varphi$.

Here is a possible outline for a proof: Consider all subsets $K \subseteq \mathbb{N} \times A$ with the following properties:

1. $(0, a) \in K$, and
2. If $(n, b) \in K$, then $(S(n), f(b)) \in K$.

Clearly $\mathbb{N} \times A$ itself has these properties; we can therefore define the smallest such set: Let

$$
L=\bigcap\{K \subseteq \mathbb{N} \times A \mid K \text { satisfies (1) and (2) }\}
$$

Now show by induction that for every $n \in \mathbb{N}$ there is a unique $b \in A$ with $(n, b) \in L$. This property defines φ by setting $\varphi(n)=b$ for all $n \in \mathbb{N}$.
The Recursion Principle makes it possible to define a recursive procedure (the function φ) via a formula (the function f).

Task 1.21

Define addition of an arbitrary natural number n and the fixed natural number m using the Recursion Principle.

Task 1.22

Define multiplication of an arbitrary natural number n with the fixed natural number m using the Recursion Principle.

Use the Recursion Principle to show that the set of natural numbers is unique in the following sense:

Task 1.23

Suppose that $\mathbb{N}, S: \mathbb{N} \rightarrow \mathbb{N}$ and 0 satisfy Axioms (D1)-(D3), and that \mathbb{N}^{\prime}, $S^{\prime}: \mathbb{N}^{\prime} \rightarrow \mathbb{N}^{\prime}$ and 0^{\prime} satisfy Axioms (D1)-(D3) as well.
Then there is a bijection ${ }^{11} \varphi: \mathbb{N} \rightarrow \mathbb{N}^{\prime}$ such that

1. $\varphi(0)=0^{\prime}$, and
2. $\varphi \circ S=S^{\prime} \circ \varphi$.
[^4]
[^0]: ${ }^{3}$ A similar definition of the natural numbers was introduced by Giuseppe Peano in 1889:
 The natural numbers are a set \mathbb{N} containing a special element called 0 , and a function $S: \mathbb{N} \rightarrow \mathbb{N}$ satisfying the following axioms:
 (P1) $0 \in \mathbb{N}$.
 (P2) If $n \in \mathbb{N}$, then $S(n) \in \mathbb{N}$.
 (P3) If $n \in \mathbb{N}$, then $S(n) \neq 0$.
 (P4) If a set A contains 0 , and if A contains $S(n)$, whenever it contains n, then the set A contains \mathbb{N}.
 (P5) $S(m)=S(n)$ implies $m=n$ for all $m, n \in \mathbb{N}$.

[^1]: ${ }^{6}$ A relation \sim on A is called a total order, if \sim is reflexive, anti-symmetric, transitive, and has the property that for all $a, b \in A, a \sim b$ or $b \sim a$ holds.
 ${ }^{7}$ A relation \sim on A is reflexive if for all $a \in A, a \sim a$.
 ${ }^{8}$ A relation \sim on A is anti-symmetric if for all $a, b \in A$ the following holds: $a \sim b$ and $b \sim a$ implies that $\mathrm{a}=\mathrm{b}$.

[^2]: ${ }^{9}$ A relation \sim on A is transitive if for all $a, b, c \in A$ the following holds: $a \sim b$ and $b \sim c$ implies that $a \sim c$.

[^3]: ${ }^{10} \mathrm{~A}$ function $f: A \rightarrow B$ is called surjective, if $f(A)=B$.

[^4]: ${ }^{11}$ A function $f: A \rightarrow B$ is a bijection, if it is both injective and surjective.

