The ordered field of real numbers \mathbb{R} has the Archimedean Property:

Task 2.17

The set of natural numbers $\{\underline{n} \mid n \in \mathbb{N}\}$ is not bounded in the set of all Dedekind cuts.

Hint: Use the completeness result above.

Task 2.18

For all positive Dedekind cuts (L, U) there is a natural number n such that

$$
\underline{1 / n}<(L, U)
$$

This means, less technically: For all $x \in \mathbb{R}$ with $x>0$ there is an $n \in \mathbb{N}$ such that

$$
\frac{1}{n}<x
$$

Note that the previous two results also hold if "Dedekind cuts" is replaced by "rational numbers". This means that the ordered field of rational numbers \mathbb{Q} also has the Archimedean Property.

3 Cauchy Sequences and Completion

In this chapter we will construct the set of real numbers in a different fashion, via Cauchy sequences of rational numbers.

As before we consider the set of rational numbers \mathbb{Q} as an ordered field.
We define the absolute value of a rational number $x \in \mathbb{Q}$ as follows:

$$
|x|=\max \{x,-x\}
$$

Recall that the absolute value on \mathbb{Q} has the following properties:

1. $|x| \geq 0$ with $|x|=0$ if and only if $x=0$
2. $|x+y| \leq|x|+|y|$
3. $|x \cdot y|=|x| \cdot|y|$

A sequence $\left(x_{n}\right)$ of rational numbers is called a Cauchy sequence if for all $r \in \mathbb{Q}$ with $r>0$ there is an $N \in \mathbb{N}$ such that for all $m, n \geq N$

$$
\left|x_{m}-x_{n}\right|<r .
$$

We will say the sequence $\left(x_{n}\right)$ converges to $x \in \mathbb{Q}$ if for all $r \in \mathbb{Q}$ with $r>0$ there is an $N \in \mathbb{N}$ such that for all $n \geq N$

$$
\left|x-x_{n}\right|<r .
$$

In this case we will write $\lim _{n \rightarrow \infty} x_{n}=x$.
Note that the sequence $1,1.4,1.41,1.414,1.4142, \ldots$ of rational numbers is a Cauchy sequence that does not converge to a rational number.

Task 3.1

Show that every convergent sequence of rational numbers is a Cauchy sequence.

We will say the two Cauchy sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ in \mathbb{Q} are equivalent if

$$
\lim _{n \rightarrow \infty}\left|x_{n}-y_{n}\right|=0 .
$$

Task 3.2

Show that this indeed defines an equivalence relation on the set of rational Cauchy sequences.

As an example, the Cauchy sequence 1, 1.4, 1.41, 1.414, $1.4142, \ldots$ is equivalent to the Cauchy sequence $2,1.5,1.42,1.415,1.4143, \ldots$

Similarly the constant sequence $1,1,1,1, \ldots$ is equivalent to the Cauchy sequence 0.9, 0.99., 0.999, ...

We will denote by \mathcal{R} the set of equivalence classes of Cauchy sequences of rational numbers. Given a Cauchy sequence of rational numbers $\left(x_{n}\right)$, we will denote its equivalence class by $\left[\left(x_{n}\right)\right]$.
\mathcal{R} will be a model for the set of real numbers. To see this we first need to define addition, multiplication and an order, and afterwards we will "spot"-check that \mathcal{R} satisfies all the properties of an ordered field with these operations. Finally we will establish that \mathcal{R} is complete.

Every Cauchy sequence is bounded:

Task 3.3

Given a Cauchy sequence $\left(x_{n}\right)$ of rational numbers there is a rational number M such that for all $n \in \mathbb{N}$:

$$
\left|x_{n}\right| \leq M .
$$

Task 3.4

If $\left(x_{n}\right)$ is a Cauchy sequence of rational numbers, $\left(\left|x_{n}\right|\right)$ is also a Cauchy sequence.

Task 3.5

Let us define $\left[\left(x_{n}\right)\right]+\left[\left(y_{n}\right)\right]$ to be $\left[\left(x_{n}+y_{n}\right)\right]$. Show that this is well defined. You have to show first that the sum of two Cauchy sequences is a Cauchy sequence.

The neutral element of addition is [(0)], the equivalence class of the constant sequence of $0 s$, the additive inverse of $\left[\left(x_{n}\right)\right]$ is $\left[\left(-x_{n}\right)\right]$.

Task 3.6

Let us define $\left[\left(x_{n}\right)\right] \cdot\left[\left(y_{n}\right)\right]$ to be $\left[\left(x_{n} \cdot y_{n}\right)\right]$. Show that this is well defined. You have to show first that the product of two Cauchy sequences is a Cauchy sequence.

The neutral element of multiplication is [(1)], the equivalence class of the constant sequence of 1 s .

Given a sequence $\left(x_{n}\right)$ and a sequence of natural numbers $n_{1}<n_{2}<n_{3}<\cdots$, we say the sequence $\left(x_{n_{k}}\right)$ is a subsequence of $\left(x_{n}\right)$. For instance, if $n_{k}=k^{2}$ for all $k \in \mathbb{N}$, then $\left(x_{n_{k}}\right)$ is the sequence $x_{1}, x_{4}, x_{9}, x_{16}, x_{25}, \ldots$

Task 3.7

Let $\left(x_{n}\right)$ be a sequence of rational numbers. Then any subsequence $\left(x_{n_{k}}\right)$ of $\left(x_{n}\right)$ is a Cauchy sequence and $\left[\left(x_{n}\right)\right]=\left[\left(x_{n_{k}}\right)\right]$.

Task 3.8

1. Given $\left[\left(x_{n}\right)\right] \neq[(0)]$, there is a Cauchy sequence $\left(y_{n}\right)$ with $y_{n} \neq 0$ for all $n \in \mathbb{N}$ such that $\left[\left(x_{n}\right)\right]=\left[\left(y_{n}\right)\right]$.
2. $\left(\frac{1}{y_{n}}\right)$ is a Cauchy sequence and $\left[\left(x_{n}\right)\right] \cdot\left[\left(\frac{1}{y_{n}}\right)\right]=[(1)]$.

The definition of an order on \mathcal{R} is more complicated. We say that $\left[\left(x_{n}\right)\right]$ is nonnegative if for all $r \in \mathbb{Q}$ with $r>0$ there is an $N \in \mathbb{N}$ such that for all $n \geq N$

$$
x_{n}>-r .
$$

Task 3.9

Using the definition above, show that $\left[\left(-\frac{1}{n}\right)\right]$ is non-negative.

Task 3.10

Show that an equivalence class of Cauchy sequences $\left[\left(x_{n}\right)\right]$ is non-negative if and only if there is a $\left(y_{n}\right) \in\left[\left(x_{n}\right)\right]$ with $y_{n} \geq 0$ for all $n \in \mathbb{N}$.

Task 3.11

Show that non-negativeness is well defined.

Finally we say $\left[\left(x_{n}\right)\right] \leq\left[\left(y_{n}\right)\right]$ if $\left[\left(y_{n}-x_{n}\right)\right]$ is non-negative. Note that $[(0)] \leq\left[\left(x_{n}\right)\right]$ if and only if $\left[\left(x_{n}\right)\right]$ is non-negative. We write $\left[\left(x_{n}\right)\right]>[(0)]$ if $[(0)] \leq\left[\left(x_{n}\right)\right]$ and $\left[\left(x_{n}\right)\right] \neq[(0)]$.
Clearly this order " \leq " is reflexive and transitive.

Task 3.12

Show that the order is anti-symmetric: Given two equivalence classes of Cauchy sequences $\left[\left(x_{n}\right)\right]$ and $\left[\left(y_{n}\right)\right]$, if $\left[\left(x_{n}\right)\right] \leq\left[\left(y_{n}\right)\right]$ and $\left[\left(y_{n}\right)\right] \leq\left[\left(x_{n}\right)\right]$ both hold, then $\left[\left(x_{n}\right)\right]=\left[\left(y_{n}\right)\right]$.

Task 3.13

Show that the order is total: Given two equivalence classes of Cauchy sequences $\left[\left(x_{n}\right)\right]$ and $\left[\left(y_{n}\right)\right]$, we have $\left[\left(x_{n}\right)\right] \leq\left[\left(y_{n}\right)\right]$ or $\left[\left(y_{n}\right)\right] \leq\left[\left(x_{n}\right)\right]$.

Task 3.14

Show: If $\left[\left(x_{n}\right)\right] \leq\left[\left(y_{n}\right)\right]$ and $\left[\left(z_{n}\right)\right] \in \mathcal{R}$, then $\left[\left(x_{n}\right)\right]+\left[\left(z_{n}\right)\right] \leq\left[\left(y_{n}\right)\right]+\left[\left(z_{n}\right)\right]$.

Task 3.15

Show: If $\left[\left(x_{n}\right)\right] \leq\left[\left(y_{n}\right)\right]$ and $\left[\left(z_{n}\right)\right]$ is non-negative, then $\left[\left(x_{n}\right)\right] \cdot\left[\left(z_{n}\right)\right] \leq\left[\left(y_{n}\right)\right] \cdot$ $\left[\left(z_{n}\right)\right]$.

Checking all properties required, one obtains that \mathcal{R} is indeed an ordered field.

