The ordered field of real numbers \mathbb{R} has the **Archimedean Property**:

Task 2.17 The set of natural numbers $\{\underline{n} \mid n \in \mathbb{N}\}$ is not bounded in the set of all Dedekind cuts.

Hint: Use the completeness result above.

Task 2.18 For all positive Dedekind cuts (L, U) there is a natural number n such that

1/n < (L, U).

This means, less technically: For all $x \in \mathbb{R}$ with x > 0 there is an $n \in \mathbb{N}$ such that

$$\frac{1}{n} < x.$$

Note that the previous two results also hold if "Dedekind cuts" is replaced by "rational numbers". This means that the ordered field of rational numbers \mathbb{Q} also has the **Archimedean Property**.

3 Cauchy Sequences and Completion

In this chapter we will construct the set of real numbers in a different fashion, via Cauchy sequences of rational numbers.

As before we consider the set of rational numbers \mathbb{Q} as an ordered field.

We define the *absolute value* of a rational number $x \in \mathbb{Q}$ as follows:

$$|x| = \max\{x, -x\}.$$

Recall that the absolute value on \mathbb{Q} has the following properties:

- 1. $|x| \ge 0$ with |x| = 0 if and only if x = 0
- 2. $|x+y| \le |x|+|y|$
- 3. $|x \cdot y| = |x| \cdot |y|$

A sequence (x_n) of rational numbers is called a *Cauchy sequence* if for all $r \in \mathbb{Q}$ with r > 0 there is an $N \in \mathbb{N}$ such that for all $m, n \geq N$

$$|x_m - x_n| < r.$$

We will say the sequence (x_n) converges to $x \in \mathbb{Q}$ if for all $r \in \mathbb{Q}$ with r > 0 there is an $N \in \mathbb{N}$ such that for all $n \ge N$

$$|x - x_n| < r.$$

In this case we will write $\lim_{n \to \infty} x_n = x$.

Note that the sequence 1, 1.4, 1.41, 1.414, 1.4142, ... of rational numbers is a Cauchy sequence that does not converge to a rational number.

Task 3.1 Show that every convergent sequence of rational numbers is a Cauchy sequence.

We will say the two Cauchy sequences (x_n) and (y_n) in \mathbb{Q} are *equivalent* if

$$\lim_{n \to \infty} |x_n - y_n| = 0.$$

Task 3.2

Show that this indeed defines an equivalence relation on the set of rational Cauchy sequences.

As an example, the Cauchy sequence 1, 1.4, 1.41, 1.414, 1.4142, \ldots is equivalent to the Cauchy sequence 2, 1.5, 1.42, 1.415, 1.4143, \ldots

Similarly the constant sequence 1, 1, 1, 1, ... is equivalent to the Cauchy sequence 0.9, 0.99, 0.999, ...

We will denote by \mathcal{R} the set of equivalence classes of Cauchy sequences of rational numbers. Given a Cauchy sequence of rational numbers (x_n) , we will denote its equivalence class by $[(x_n)]$.

 \mathcal{R} will be a model for the set of real numbers. To see this we first need to define addition, multiplication and an order, and afterwards we will "spot"-check that \mathcal{R} satisfies all the properties of an ordered field with these operations. Finally we will establish that \mathcal{R} is complete.

Every Cauchy sequence is bounded:

Task 3.3

Given a Cauchy sequence (x_n) of rational numbers there is a rational number M such that for all $n \in \mathbb{N}$:

 $|x_n| \le M.$

Task 3.4

If (x_n) is a Cauchy sequence of rational numbers, $(|x_n|)$ is also a Cauchy sequence.

Task 3.5

Let us define $[(x_n)] + [(y_n)]$ to be $[(x_n + y_n)]$. Show that this is well defined. You have to show first that the sum of two Cauchy sequences is a Cauchy sequence.

The neutral element of addition is [(0)], the equivalence class of the constant sequence of 0s, the additive inverse of $[(x_n)]$ is $[(-x_n)]$.

Task 3.6

Let us define $[(x_n)] \cdot [(y_n)]$ to be $[(x_n \cdot y_n)]$. Show that this is well defined. You have to show first that the product of two Cauchy sequences is a Cauchy sequence.

The neutral element of multiplication is [(1)], the equivalence class of the constant sequence of 1s.

Given a sequence (x_n) and a sequence of natural numbers $n_1 < n_2 < n_3 < \cdots$, we say the sequence (x_{n_k}) is a subsequence of (x_n) . For instance, if $n_k = k^2$ for all $k \in \mathbb{N}$, then (x_{n_k}) is the sequence $x_1, x_4, x_9, x_{16}, x_{25}, \ldots$

Task 3.7

Let (x_n) be a sequence of rational numbers. Then any subsequence (x_{n_k}) of (x_n) is a Cauchy sequence and $[(x_n)] = [(x_{n_k})]$.

Task 3.8

- 1. Given $[(x_n)] \neq [(0)]$, there is a Cauchy sequence (y_n) with $y_n \neq 0$ for all $n \in \mathbb{N}$ such that $[(x_n)] = [(y_n)]$.
- 2. $\left(\frac{1}{y_n}\right)$ is a Cauchy sequence and $\left[(x_n)\right] \cdot \left[\left(\frac{1}{y_n}\right)\right] = \left[(1)\right]$.

The definition of an order on \mathcal{R} is more complicated. We say that $[(x_n)]$ is non-negative if for all $r \in \mathbb{Q}$ with r > 0 there is an $N \in \mathbb{N}$ such that for all $n \ge N$

$$x_n > -r$$

Task 3.9 Using the definition above, show that $[(-\frac{1}{n})]$ is non-negative.

Task 3.10

Show that an equivalence class of Cauchy sequences $[(x_n)]$ is non-negative if and only if there is a $(y_n) \in [(x_n)]$ with $y_n \ge 0$ for all $n \in \mathbb{N}$.

Task 3.11 Show that non-negativeness is well defined.

Finally we say $[(x_n)] \leq [(y_n)]$ if $[(y_n - x_n)]$ is non-negative. Note that $[(0)] \leq [(x_n)]$ if and only if $[(x_n)]$ is non-negative. We write $[(x_n)] > [(0)]$ if $[(0)] \leq [(x_n)]$ and $[(x_n)] \neq [(0)]$.

Clearly this order " \leq " is reflexive and transitive.

Task 3.12

Show that the order is anti-symmetric: Given two equivalence classes of Cauchy sequences $[(x_n)]$ and $[(y_n)]$, if $[(x_n)] \leq [(y_n)]$ and $[(y_n)] \leq [(x_n)]$ both hold, then $[(x_n)] = [(y_n)]$.

Task 3.13

Show that the order is total: Given two equivalence classes of Cauchy sequences $[(x_n)]$ and $[(y_n)]$, we have $[(x_n)] \leq [(y_n)]$ or $[(y_n)] \leq [(x_n)]$.

Task 3.14 Show: If $[(x_n)] \leq [(y_n)]$ and $[(z_n)] \in \mathcal{R}$, then $[(x_n)] + [(z_n)] \leq [(y_n)] + [(z_n)]$.

Task 3.15 Show: If $[(x_n)] \leq [(y_n)]$ and $[(z_n)]$ is non-negative, then $[(x_n)] \cdot [(z_n)] \leq [(y_n)] \cdot [(z_n)]$.

Checking all properties required, one obtains that \mathcal{R} is indeed an ordered field.