The ordered field of real numbers R has the Archimedean Property:

Task 2.17
The set of natural numbers {n | n € N} is not bounded in the set of all Dedekind
cuts.

Hint: Use the completeness result above.

Task 2.18

For all positive Dedekind cuts (L, U) there is a natural number n such that

1/n < (L,U).

This means, less technically: For all x € R with « > 0 there is an n € N such that

1
— <.
n

Note that the previous two results also hold if ”Dedekind cuts” is replaced by “ra-
tional numbers”. This means that the ordered field of rational numbers QQ also has
the Archimedean Property.

3 Cauchy Sequences and Completion

In this chapter we will construct the set of real numbers in a different fashion, via
Cauchy sequences of rational numbers.

As before we consider the set of rational numbers Q as an ordered field.
We define the absolute value of a rational number z € Q as follows:
|x| = max{z, —x}.

Recall that the absolute value on Q has the following properties:
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1. || > 0 with |z| =0 if and only if x =0
2. o +y| <]+ yl

3. |z -yl =z[ |y

A sequence (z,,) of rational numbers is called a Cauchy sequence if for all r € Q
with r > 0 there is an N € N such that for all m,n > N

| — x| < 7.

We will say the sequence (z,,) converges to x € Q if for all » € Q with r > 0 there
is an NV € N such that for all n > N

|z — x| <71
In this case we will write lim z,, = z.
n—oo

Note that the sequence 1, 1.4, 1.41, 1.414, 1.4142, ... of rational numbers is a
Cauchy sequence that does not converge to a rational number.

Task 3.1

Show that every convergent sequence of rational numbers is a Cauchy sequence.

We will say the two Cauchy sequences (x,,) and (y,) in Q are equivalent if

nlglgo |zn, — yn| = 0.

Task 3.2
Show that this indeed defines an equivalence relation on the set of rational
Cauchy sequences.
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As an example, the Cauchy sequence 1, 1.4, 1.41, 1.414, 1.4142, ... is equivalent
to the Cauchy sequence 2, 1.5, 1.42, 1.415, 1.4143, ...

Similarly the constant sequence 1,1,1,1,... is equivalent to the Cauchy sequence
0.9,0.99.,0.999, . ...

We will denote by R the set of equivalence classes of Cauchy sequences of rational
numbers. Given a Cauchy sequence of rational numbers (x,), we will denote its
equivalence class by [(xy)].

R will be a model for the set of real numbers. To see this we first need to define
addition, multiplication and an order, and afterwards we will “spot”-check that R
satisfies all the properties of an ordered field with these operations. Finally we will
establish that R is complete.

Every Cauchy sequence is bounded:

Task 3.3
Given a Cauchy sequence (z,) of rational numbers there is a rational number
M such that for all n € N:

|zn| < M.

Task 3.4
If (x,) is a Cauchy sequence of rational numbers, (|z,|) is also a Cauchy se-
quence.

Task 3.5
Let us define [(zy,)] + [(yn)] to be [(zn, +yn)]. Show that this is well defined. You
have to show first that the sum of two Cauchy sequences is a Cauchy sequence.
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The neutral element of addition is [(0)], the equivalence class of the constant se-
quence of 0s, the additive inverse of [(z,)] is [(—zp)]-

Task 3.6
Let us define [(xy,)] - [(yn)] to be [(zn - yn)]. Show that this is well defined.
You have to show first that the product of two Cauchy sequences is a Cauchy
sequence.

The neutral element of multiplication is [(1)], the equivalence class of the constant
sequence of 1s.

Given a sequence (z,) and a sequence of natural numbers n; < ng < ng < ---, we
say the sequence (x,,) is a subsequence of (z,). For instance, if ny = k? for all
k € N, then (x,,) is the sequence x1, x4, g, T16, T25, . . .

Task 3.7

Let (xy,) be a sequence of rational numbers. Then any subsequence (x,, ) of (x,,)
is a Cauchy sequence and [(z,,)] = [(zn, )]

Task 3.8

1. Given [(zp)] # [(0)], there is a Cauchy sequence (y,) with y, # 0 for all
n € N such that [(z,)] = [(yn)]-

2. (yin) is a Cauchy sequence and [(z,,)] - [(yin)] = [(1)].

The definition of an order on R is more complicated. We say that [(x,)] is non-
negative if for all r € Q with r > 0 there is an N € N such that for all n > N

Ty > —T.
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Task 3.9

Using the definition above, show that [(—1)] is non-negative.

Task 3.10
Show that an equivalence class of Cauchy sequences [(z,,)] is non-negative if and
only if there is a (y,) € [(xy)] with y,, > 0 for all n € N.

Task 3.11

Show that non-negativeness is well defined.

Finally we say [(z,)] < [(yn)] if [(yn — )] is non-negative. Note that [(0)] < [(zy,)]
if and only if [(x,)] is non-negative. We write [(x,)] > [(0)] if [(0)] < [(xy)] and

[(zn)] # [(0)].

Clearly this order “<” is reflexive and transitive.

Task 3.12

Show that the order is anti-symmetric: Given two equivalence classes of Cauchy
sequences [(z,,)] and [(yn)], if [(zn)] < [(yn)] and [(yn)] < [(x5)] both hold, then
[(2n)] = [(yn)]-

29




Task 3.13

Show that the order is total: Given two equivalence classes of Cauchy sequences
[(zn)] and [(yn)], we have [(z4)] < [(yn)] or [(yn)] < [(zn)]-

Task 3.14
Show: If [(z,)] < [(yn)] and [(2n)] € R, then [(zn)] + [(2n)] < [(yn)] + [(2n)].

Task 3.15
[S(hox);\j: If [(z)] < [(yn)] and [(z,)] is non-negative, then [(zy)] - [(zn)] < [(yn)] -

Checking all properties required, one obtains that R is indeed an ordered field.
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