
The ordered field of real numbers R has the Archimedean Property:

Task 2.17

The set of natural numbers {n | n ∈ N} is not bounded in the set of all Dedekind
cuts.

Hint: Use the completeness result above.

Task 2.18

For all positive Dedekind cuts (L,U) there is a natural number n such that

1/n < (L,U).

This means, less technically: For all x ∈ R with x > 0 there is an n ∈ N such that

1

n
< x.

Note that the previous two results also hold if ”Dedekind cuts” is replaced by “ra-
tional numbers”. This means that the ordered field of rational numbers Q also has
the Archimedean Property.

3 Cauchy Sequences and Completion

In this chapter we will construct the set of real numbers in a different fashion, via
Cauchy sequences of rational numbers.

As before we consider the set of rational numbers Q as an ordered field.

We define the absolute value of a rational number x ∈ Q as follows:

|x| = max{x,−x}.

Recall that the absolute value on Q has the following properties:
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1. |x| ≥ 0 with |x| = 0 if and only if x = 0

2. |x+ y| ≤ |x|+ |y|

3. |x · y| = |x| · |y|

A sequence (xn) of rational numbers is called a Cauchy sequence if for all r ∈ Q

with r > 0 there is an N ∈ N such that for all m,n ≥ N

|xm − xn| < r.

We will say the sequence (xn) converges to x ∈ Q if for all r ∈ Q with r > 0 there
is an N ∈ N such that for all n ≥ N

|x− xn| < r.

In this case we will write lim
n→∞

xn = x.

Note that the sequence 1, 1.4, 1.41, 1.414, 1.4142, . . . of rational numbers is a
Cauchy sequence that does not converge to a rational number.

Task 3.1

Show that every convergent sequence of rational numbers is a Cauchy sequence.

We will say the two Cauchy sequences (xn) and (yn) in Q are equivalent if

lim
n→∞

|xn − yn| = 0.

Task 3.2

Show that this indeed defines an equivalence relation on the set of rational
Cauchy sequences.
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As an example, the Cauchy sequence 1, 1.4, 1.41, 1.414, 1.4142, . . . is equivalent
to the Cauchy sequence 2, 1.5, 1.42, 1.415, 1.4143, . . .

Similarly the constant sequence 1, 1, 1, 1, . . . is equivalent to the Cauchy sequence
0.9, 0.99., 0.999, . . . .

We will denote by R the set of equivalence classes of Cauchy sequences of rational
numbers. Given a Cauchy sequence of rational numbers (xn), we will denote its
equivalence class by [(xn)].

R will be a model for the set of real numbers. To see this we first need to define
addition, multiplication and an order, and afterwards we will “spot”-check that R
satisfies all the properties of an ordered field with these operations. Finally we will
establish that R is complete.

Every Cauchy sequence is bounded:

Task 3.3

Given a Cauchy sequence (xn) of rational numbers there is a rational number
M such that for all n ∈ N:

|xn| ≤M.

Task 3.4

If (xn) is a Cauchy sequence of rational numbers, (|xn|) is also a Cauchy se-
quence.

Task 3.5

Let us define [(xn)]+[(yn)] to be [(xn+yn)]. Show that this is well defined. You
have to show first that the sum of two Cauchy sequences is a Cauchy sequence.
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The neutral element of addition is [(0)], the equivalence class of the constant se-
quence of 0s, the additive inverse of [(xn)] is [(−xn)].

Task 3.6

Let us define [(xn)] · [(yn)] to be [(xn · yn)]. Show that this is well defined.
You have to show first that the product of two Cauchy sequences is a Cauchy
sequence.

The neutral element of multiplication is [(1)], the equivalence class of the constant
sequence of 1s.

Given a sequence (xn) and a sequence of natural numbers n1 < n2 < n3 < · · · , we
say the sequence (xnk

) is a subsequence of (xn). For instance, if nk = k2 for all
k ∈ N, then (xnk

) is the sequence x1, x4, x9, x16, x25, . . .

Task 3.7

Let (xn) be a sequence of rational numbers. Then any subsequence (xnk
) of (xn)

is a Cauchy sequence and [(xn)] = [(xnk
)].

Task 3.8

1. Given [(xn)] 6= [(0)], there is a Cauchy sequence (yn) with yn 6= 0 for all
n ∈ N such that [(xn)] = [(yn)].

2. ( 1

yn
) is a Cauchy sequence and [(xn)] · [(

1

yn
)] = [(1)].

The definition of an order on R is more complicated. We say that [(xn)] is non-
negative if for all r ∈ Q with r > 0 there is an N ∈ N such that for all n ≥ N

xn > −r.
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Task 3.9

Using the definition above, show that [(− 1

n
)] is non-negative.

Task 3.10

Show that an equivalence class of Cauchy sequences [(xn)] is non-negative if and
only if there is a (yn) ∈ [(xn)] with yn ≥ 0 for all n ∈ N.

Task 3.11

Show that non-negativeness is well defined.

Finally we say [(xn)] ≤ [(yn)] if [(yn − xn)] is non-negative. Note that [(0)] ≤ [(xn)]
if and only if [(xn)] is non-negative. We write [(xn)] > [(0)] if [(0)] ≤ [(xn)] and
[(xn)] 6= [(0)].

Clearly this order “≤” is reflexive and transitive.

Task 3.12

Show that the order is anti-symmetric: Given two equivalence classes of Cauchy
sequences [(xn)] and [(yn)], if [(xn)] ≤ [(yn)] and [(yn)] ≤ [(xn)] both hold, then
[(xn)] = [(yn)].
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Task 3.13

Show that the order is total: Given two equivalence classes of Cauchy sequences
[(xn)] and [(yn)], we have [(xn)] ≤ [(yn)] or [(yn)] ≤ [(xn)].

Task 3.14

Show: If [(xn)] ≤ [(yn)] and [(zn)] ∈ R, then [(xn)] + [(zn)] ≤ [(yn)] + [(zn)].

Task 3.15

Show: If [(xn)] ≤ [(yn)] and [(zn)] is non-negative, then [(xn)] · [(zn)] ≤ [(yn)] ·
[(zn)].

Checking all properties required, one obtains that R is indeed an ordered field.
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