In the past two weeks, we have explored the many different effects iteration has on
linear functions. This paper will go into depth on convergence and divergence, the causes
behind the two and the relationship the function has over determining convergence. We have
compiled a series of examples, explanations and visual graphs to help us demonstrate our
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iteration of a linear equation. The formula for

findings.

The main topic we will be discussing is

a linear equation we will be using idaxg where a and b are chosen values and x, is the
value that will be changing. Iteration in mathematics is the repetition of a process, in this case
the repetition of a linear equation. By choosing easy numbers for the initial values we can see
how iteration works:

a=1,b=1,x,=1

Txo+1 = xp, xo = 1

When we plug in 1 for x, we obtain a new value for x,

11)+1 =2, x,=1

12)+1=3,x,=2

13)+1=4,x3=3

As you can see, the solution for the function increases with every new iteration. If one
were to continue the iterations forever we would see that the function tends towards infinity. We

call this divergence. On the other hand, if the function were to tend towards a number instead of
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infinity, we would say the function converges. An example of this would be a function with the

starting values of:
a=05b=4, x,=4
'\QAFSQ h“\ Q\jz\\“g‘ 0.5x0+4=xn,x00 =4
\? 1'% \ 0.5@4)+4=6,x=4
eq O 0.56)+4=7,x,=6
0.5(7)+4 =75 x3=7
0.5(7.5)+ 4 = 7.875, x,= 7.5
@S dﬂx\ W \‘\“‘ 0.5(7.875) + 4 = ?.9375, Xs=7.875 |
' €
o dW' VAU (€ 6 @ ¥

From this example we can see that the function is tending towards the nu ber 8, because of QQ g)?

this we say that it converges to 8.
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In the previous example, we see that when a = 0.5, b =4 and x, = 4 we obtain
convergence. However, do we only obtain convergence with those specific values or are there
more values that would give us convergence? By using different values for a, b and xywe can

find patterns and relationships between the numbers and convergence:

Chart 1 [a, b x,] Tends towards [a, b x,] Tends towards
A1 [5, 3, 8] Divergence, o B1 [0.5, 2, -3] Convergence, 4
A2 [-3, 5, 2] Divergence, o B2 [0.5, 2, 7] Convergence, 4
A3 [5.5, 3.1, Divergence, o B3 [0.5, 2, 9] Convergence, 4
53]
A4 [0.2, 3, 2] Convergence, 3.75 B4 [34.43, 2, 78] | Divergence,
A5 [-7,2,1] Divergence, o B5 [7, 2, 456] Divergence, o
A6 [5, 8, -2] Convergence. -2 B6 [-45, -34, 32] | Divergence, o«
A7 [45, -2, 7] Divergence, o B7 [-23, 33, -8] Divergence, o
A8 [0.5,0.2, Convergence, 0.4 B8 [0.123, 33, 9] | Convergence,
70] 37.62
A9 g—8]5 -0.2, Convergence. -0.13 | B9 [5, 3, 8] Divergence, o

This table tells us a lot about iterated functions. As you can see, convergence largely
occurs when our “a@” value is a decimal (A4, A8, A9). It also shows that the function will

converge to the same value regardless of x,,(B1, B2, B3) if a and b stay the same. Additionally,

the table shows that when “a” is not a decimal, it appears we obtain divergence for all x,. We
can see through this table that it is possible for a function to converge even if it is not a decimal
(AB), but why is this? If we assume that a function does converge, then that means at some
point when we plug in the value for x,we will obtain x,:
[0.5, 4, 4]

0.5xp+4=x,,x, =4

0.5(4)+4=6,x=4

0.5(6)+4=7,x,=6
05(7)+4=75,x3=7
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and convergence. Knowing this, we can co

Shown here, when we plug in 8 for the val

0.5(7.5) + 4 = 7.875, x,= 7.5
0.5(7.875) + 4 = 7.9375, xs= 7.875

point in iteration where the value

some point in the iteration prosses

0.5(8)+4=8, x,=8
05(8)+4=8, x, =

of x,, we get 8 back, thus creating a loop

de if a function converges, then there must be a

Il give back the same value of x,,. In other words, at

=+ b = x,, will be true. With x,, being the value of

convergence. This implies that if not all, then almost all iterated functions converge with some

value of x,,.

b
x, being equal to T4 found by solving for x,;:

b
ax,+b=x, ob=x,-ax, »b=x,(1-a)- x,= Ta
—-a

If we test this out on our functions we can see that indeed they do converge with a

specific value ofx,,:

Chart 2 | [a, b xq] b Tends towards
1—a

A1 5. 3, ﬁ] %z 0.75 (C));rgverges, -

A2 -3, 5’ﬁ] 1_(5_3)= 195 g)grgverges,

A3 [5.5, 3.1, ﬁ] %= -0.688 %‘_’gggrges’

A5 7.2, ﬁ] 1_(2_7)= 0.25 ggrgverges,
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This not only shows us that convergence for every function is possible, but it also shows

b
us that the function will converge to x, as long as x, = o giving us the only other way where

convergence will not fail. This tells us that for a function to always fail to converge two “
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conditions must be made: “a” must not be a decimal (-1<a<1), and there can be no a or b value
b b
that makes T a equal to anything or simply put “a” cannot equal 1 for — is undefined, the only

exception being if b = 0 then a must equal a decimal to obtain convergence. We ¢an visualize

this conclusion with what is called a cobweb: ’\/
Soska

Y=-2X+1

K
:
-
-F
¢
=

o x

N \p LK) L 0=
v “ Qvtl Q)c\’)?,

In this graph, we can visualize the iteration of the function and how it begins to diverge
away from the original x,. With the equation y=-2x+1, the first iteration we can calculate by
hand, when x, = 1, is x; = —1. When looking back at the graph, we can locate this xvalue by
drawing a vertical line from x,to our y=-2x+1 function, then a horizontal line to our y=x linear
function and then back up to our original function y=-2x+1. If we continue this process for the
next iteration, we will get x, = —3both by hand and on our graph. By repeating these steps, we
can assume the next iteration will give us x; = 5. In continuing this iteration, we begin to see the
cobweb pattern on our graph as it diverges rather than converging to a solution or value.

From everything we have learned thus far, we can see that the functions are divided into
different types. Functions like A4, A8, A9 and so on (functions with “a” as a decimal) are Type 1
functions, or functions that give rise to convergent sequences under iteration regardless of the
value of x,. Type 2 functions, which, on iteration, appears to give a divergent sequence for
every initial value (A1, A2, A3) but can still converge for some values of x,. And finally Type 3
functions, functions that never converge.

We now know integrated function can be separated into 3 types as well as that the value of
b
convergence can be determined jointly by a and b through T But how is the value of

convergence, or the limiting value (L), influenced by only one of these variables at a time?
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Chart 3 [a, b, xq, L] [a, b, xg, L] [a, b, x¢, L]
C1 [05,1,1,2] |D1 [0.1,1,1,1.1] | E1 [0.9,1,1,9.9]
C2 [05,2,1,4] |D2 [0.1,2,1,2.2] | E2 [0.9,2,1,19.9]
C3 [0.5,3,1,6] |[D3 [0.1,3,1,3.3] | E3 [0.9, 3,1, 30]
C4 [05,4,1,8] | D4 [0.1,4,1,4.4] | E4 [0.9, 4,1, 40]
C5 [0.5,5,1,10] | D5 [0.1,5,1,5.5] | ES [0.9, 5,1, 50]
C6 [0.5,6,1,12] | D6 [0.1,6,1,6.6] | E6 [0.9, 6, 1, 60]
C7 [0.5,7,1,14] | D7 [01,7,1,7.7] | E7 [0.9,7,1,70]
C8 [0.5,8,1,16] | D8 [0.1,8,1,8.8] | E8 [0.9, 8,1, 80]
C9 [0.5,9,1,18] | D9 [0.1,9,1,9.9] | E9 [0.9,9, 1, 90]
A changing
Chart 4 [a, b, xo, L] [a, b, xo, L] [a, b, xq, L]
F1 [0.1,1,1,11] | G1 [0.1,5,1, 5.5] H1 [0.1,10,1,11.1]
F2 [0.2,1,1,1.25] | G2 [0.2,5,1,6.25] | H2 [0.2,10, 1, 12.5]
F3 [0.3,1,1,1.42] | G3 [0.3,5,1,7.14] |H3 [0.3,10, 1, 14.28]
F4 [0.4,1,1,1.66] | G4 [0.4,5,1,8.33] |H4 [0.4,10, 1, 16.6]
F5 [0.5,1,1,1.99] | G5 [0.5, 5,1, 10] H5 [0.5,10, 1, 20]
F6 [0.6,1,1,2.5] | G6 [0.6,5,1,12.5] |H6 [0.6, 10, 1, 25]
F7 [0.7,1,1,3.33] | G7 [0.7,5,1,16.6] |H7 [0.7,10, 1, 33.3]
F8 [0.8,1,1, 5] G8 [0.8, 5,1, 25] H8 [0.8, 10, 1, 50]
F9 [0.9,1,1,9.99] | G9 [0.9, 5,1, 50] H9 [0.9, 10, 1, 100]

When reading off tables with a lot of data, it can be hard to fully grasp what the table is telling

you. We can do this better by using graphs:







Once we put all the data in graph form, we can see that the points form a line, in the
case where a and x, are constant with b changing. It shows L is increasing at a constant rate
with respect to b. Additionally we can observe that the rate at which L is increasing, or the slope

of the line, is equal to the inverse of a. For example, if we take the middle line, line c, it has a

2
slope of T That is, L is increasing at a rate of 2 for every 1 b. If we take the inverse of that slope

1
we get > or “a”. We can do this process for the other two lines as well and obtain the same

conclusion. This tells us, while we are testing the effects of b on L, our chosen “a” will influence

b
our results. This should be expected however, because since L = T—a we cannot separate “b”

from “a” when talking about L.

Analysis on the second graph, graph J, is harder than the analysis on graph | because

the line created by the points increases exponentially. This means as “a” approaches infinity,

the rate at which L is increasing also approaches infinity. In addition, as “a” approaches 0 not
only does L approach b, but the rate at which it approaches “b” goes to zero.

While analyzing Chart 4 | noticed an interesting ration ship between the L values of
different functions that have different b values. The L values for the H column are twice as big
as the L values for the G column and ten times as big as the L values for the F column. Looking
then at the values of b | then observed the same pattern, the b value for the H column is twice
as big as the b value for the G column and ten times as big as the b value for the F column. This
can also be observed in Chart 3, the L value of C2 is twice as big as the L value of C1 while the
L value of C3 is three times as big as the L values of C1. This same pattern can also be

observed with the b values. However, the same pattern cannot be observed for the other two

b
columns, D and E. What | found is that this pattern is justa in disguise. The reason column H
1
is ten times as big as column F is because the L value for column F is equal to Ewhile the |

10
value of column H is 1—or the F column times 10. What this shows us is when talking about L

we cannot only talk about a or b separately, we must talk about their relationship with L
together.
We are close to having an excellent grasp on the iteration of linear functions, however

we still must explore the speed of convergence, or how fast a function converges to L. The



easiest method to find this would be to manually write down every single step until convergence
and then count them. So, this is exactly what we did, by writing some code in the programming

language Python that solves the linear function step by step and counts how many steps it took
for convergence.

w=0
while w 1= 2:
h=0
inputs = [input(),input(),input()]
a = inputs[0]
b = inputs[1]
X = inputs[2]
yes=0 . {
counter =0
while yes I= 10000: \/—Q ‘\2’ \U | Q_Q
yes =yes + 1
x=float(a)*float(x)+float(b)
if h==x:
break
counter = counter + 1
h=x
print(x)
print(counter)

1

This code was the easiest and fastest way | found to determine the speed of convergence. With
it we can quickly and effectively test which variables most impact the speed of convergence:

s will represent the speed of convergence or how many steps it took to reach convergence

chart 5 [a,b,xg, S] [a,b,xg, S] [a,b,xq, S]

K1 [0.1, 6, 6, 16] L1 [0.5,1, 6, 54] | M1 [0.5, 5,1, 53]
K2 [0.2, 6, 6, 23] L2 [0.5,2,6,52] | M2 [0.5, 5, 2, 53]
K3 [0.3, 6, 6, 30] L3 [0.5,3,6,1 |M3 [0.5, 5, 3, 53]
K4 [0.4, 6, 6, 40] L4 [0.5,4,6,52] | M4 [0.5, 5, 4, 53]
K5 [0.5, 6, 6, 53] L5 [0.5,5,6,52] | M5 [0.5, 5, 5, 52]
K6 [0.6, 6, 6, 71] L6 [0.5, 6, 6,53] | M6 [0.5, 5, 6, 52]
K7 [0.7, 6, 6, 99] L7 [0.5,7,6,53] | M7 [0.5, 5,7, 52]
K8 [0.8,6,6,159] |L8 [0.5, 8, 6,53] | M8 [0.5, 5, 8, 51]
K9 [0.9,6,6,331] |L9 [0.5,9,6,53] | M9 [0.5, 5,9, 50]

*Note that my computer goes to the 15th decimal place, this means that if there is a number
with repeating 9’s behind it will not return convergence until there are at least 15 9s behind the
number. This also means that my computer says the function converges only after 15 decimal
places.



Chart 5 shows us not only does a has the greatest impact on the speed of convergence,
but it also suggests that b and x, have little to no impact on the speed of convergence. Since “b”
and x, have almost nothing to do with the speed of convergence, there is little to be said about
them. We can, however, say multiple things about “a”. By looking at the “s” values for the K
column and how they compare with each other, we can see that as “a” increases so does “s”.

Moreover, while “a” increases at a constant rate, we expect “s” to increase exponentially. This

means that as “a” approaches one, “s” approaches infinity. This further confirms what we said

previously about type 3 functions. Furthermore, as “a” approaches 0 so does s, this is because
if a is equal to zero then the function is equal to b and is already convergent, no steps needed to

reach convergence.

After experimenting with many different functions and values, we have discovered more
about the properties of iteration, what causes convergence and divergence and the impact “a”,

“b” and x, values have on this process. We found that “a” has the greatest impact on almost
everything, from determining convergence to the speed at which the function converges.
Furthermore, we found that while b has a role to play when determining the value of

convergence for Type 2 functions this is almost all it does. Lastly, x, does almost nothing.






