Throughout this chapter all functions are assumed to be bounded.

6.1 Definition and Examples

A finite set $P = \{x_0, x_1, x_2, \dots, x_n\}$ of real numbers is called a PARTITION of the interval [a, b], if

$$a = x_0 < x_1 < x_2 < \dots < x_n = b.$$

Figure 15: A 5-element partition of the interval [a, b].

Let a function $f:[a,b]\to\mathbb{R}$ and a partition $P=\{x_0,x_1,x_2,\ldots,x_n\}$ of the interval [a,b] be given. Let $i\in\{1,2,3,\ldots,n\}$. We define

$$m_i(f) := \inf\{f(x) \mid x \in [x_{i-1}, x_i]\},\$$

and

$$M_i(f) := \sup\{f(x) \mid x \in [x_{i-1}, x_i]\}.$$

The LOWER RIEMANN SUM $\mathcal{L}(f, P)$ of the function f with respect to the partition P is defined as

$$\mathcal{L}(f, P) := \sum_{i=1}^{n} m_i(f)(x_i - x_{i-1}).$$

See Figure 16 on page 56.

Analogously, the UPPER RIEMANN SUM $\mathcal{U}(f, P)$ is defined as

$$\mathcal{U}(f,P) := \sum_{i=1}^{n} M_i(f)(x_i - x_{i-1}).$$

See Figure 17 on page 57.

Figure 16: A lower Riemann sum with a partition of 20 equally spaced points.

The LOWER RIEMANN INTEGRAL of f on the interval [a,b], denoted by $\mathcal{L} \int_a^b f(x) \, dx$, is defined as

$$\mathcal{L} \int_{a}^{b} f(x) dx := \sup \{ \mathcal{L}(f, P) \mid P \text{ is a partition of } [a, b] \}.$$

Similarly, the UPPER RIEMANN INTEGRAL of f on the interval [a,b] is defined as

$$\mathcal{U} \int_a^b f(x) dx := \inf \{ \mathcal{U}(f, P) \mid P \text{ is a partition of } [a, b] \}.$$

Let P and Q be two partitions of the interval [a,b]. We say that the partition Q is FINER than the partition P if $P \subseteq Q$. In this situation, we also call P COARSER than Q.

Task 6.1

Let $f:[a,b]\to\mathbb{R}$ be a function, and P and Q be two partitions of the interval [a,b]. Assume that Q is finer than P. Then

$$\mathcal{L}(f, P) < \mathcal{L}(f, Q) < \mathcal{U}(f, Q) < \mathcal{U}(f, P).$$

Note that Task 6.1 implies that

$$\mathcal{L} \int_{a}^{b} f(x) \, dx \le \mathcal{U} \int_{a}^{b} f(x) \, dx.$$

Figure 17: An upper Riemann sum with a partition of 12 equally spaced points.

We are finally in a position to define the concept of integrability! We will say that a function $f:[a,b]\to\mathbb{R}$ is RIEMANN INTEGRABLE on the interval [a,b], if

$$\mathcal{L} \int_{a}^{b} f(x) \, dx = \mathcal{U} \int_{a}^{b} f(x) \, dx.$$

Their common value is then called the RIEMANN INTEGRAL of f on the interval [a, b]and denoted by

$$\int_a^b f(x) \, dx.$$

Exercise 6.2

Exercise 6.2 Use the definition above to compute $\mathcal{L}\int_0^1 x \, dx$ and $\mathcal{U}\int_0^1 x \, dx$. Is the function Riemann integrable on [0, 1]?

Exercise 6.3

Let $f:[0,1]\to\mathbb{R}$ be defined by

$$f(x) = \begin{cases} 1, & \text{if } x \in \mathbb{Q} \\ 0, & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

Use the definitions above to compute $\mathcal{L}\int_0^1 f(x) dx$ and $\mathcal{U}\int_0^1 f(x) dx$. Is the function Riemann integrable on [0, 1]?

Task 6.4

A function $f:[a,b]\to\mathbb{R}$ is Riemann integrable if and only if for every $\varepsilon>0$ there is a partition P of [a,b] such that

$$\mathcal{U}(f, P) - \mathcal{L}(f, P) < \varepsilon.$$

The following "Lemma" is quite technical; it prepares for the proof of the subsequent result. Note that given two partitions P and Q, the partition $P \cup Q$ is finer than both P and Q.

Given a partition P, we define its MESH WIDTH $\mu(P)$ as

$$\mu(P) := \max\{x_i - x_{i-1} \mid i = 1, 2, \dots, n\}.$$

Task 6.5

Let $f:[a,b]\to\mathbb{R}$ be a bounded function with $|f(x)|\leq M$ for all $x\in[a,b]$. Let $\varepsilon>0$ be given, and let P_0 be a partition of [a,b] with n+1 elements. Then there is a $\delta>0$ (depending on M, n and ε) such that for any partition P of [a,b] with mesh width $\mu(P)<\delta$

$$\mathcal{U}(P) < \mathcal{U}(P \cup P_0) + \varepsilon$$
 and $\mathcal{L}(P) > \mathcal{L}(P \cup P_0) - \varepsilon$.

Task 6.6

A function $f:[a,b]\to\mathbb{R}$ is Riemann integrable if and only if for every $\varepsilon>0$ there is a $\delta>0$ such that for **all** partitions P of [a,b] with mesh width $\mu(P)<\delta$

$$\mathcal{U}(f, P) - \mathcal{L}(f, P) < \varepsilon.$$

Two important classes of functions are Riemann-integrable—continuous functions and monotone functions:

Task 6.7

If $f:[a,b]\to\mathbb{R}$ is continuous on [a,b], then f is Riemann integrable on [a,b].

Task 6.8

If $f:[a,b]\to\mathbb{R}$ is increasing on [a,b], then f is Riemann integrable on [a,b].

An analogous result holds for decreasing functions, of course.

6.2 Arithmetic of Integrals

Exercise 6.9

Let $f:[a,b]\to\mathbb{R}$ be Riemann integrable on [a,b]. Then for all $\lambda\in\mathbb{R}$, the function λf is also Riemann integrable on [a,b], and

$$\int_{a}^{b} \lambda f(x) \, dx = \lambda \int_{a}^{b} f(x) \, dx.$$

Exercise 6.10

Let $f, g : [a, b] \to \mathbb{R}$ be Riemann integrable on [a, b]. Then f + g is also Riemann integrable on [a, b], and

$$\int_{a}^{b} f(x) + g(x) \, dx = \int_{a}^{b} f(x) \, dx + \int_{a}^{b} g(x) \, dx.$$

Task 6.11

Let $f : [a, c] \to \mathbb{R}$ be a function and a < b < c. Then f is Riemann integrable on [a, c] if and only if f is Riemann integrable on both [a, b] and [b, c]. In this case

$$\int_{a}^{c} f(x) \, dx = \int_{a}^{b} f(x) \, dx + \int_{b}^{c} f(x) \, dx.$$

Exercise 6.12

Suppose the function $f:[a,b]\to\mathbb{R}$ is bounded above by $M\in\mathbb{R}$: $f(x)\leq M$ for all $x\in[a,b]$. Then

$$\int_{a}^{b} f(x) \, dx \le M \cdot (b - a).$$

6.3 The Fundamental Theorem of Calculus

Task 6.13

Let $f:[a,b]\to\mathbb{R}$ be continuous on [a,b]. Then there is a number $c\in[a,b]$ such that

$$f(c) = \frac{1}{b-a} \int_a^b f(x) \, dx.$$

Task 6.14

Let $f:[a,b]\to\mathbb{R}$ be bounded and Riemann integrable on [a,b]. Let

$$F(x) = \int_{a}^{x} f(\tau) d\tau.$$

Then $F:[a,b]\to\mathbb{R}$ is continuous on [a,b].

Does your proof of the result above actually yield a stronger result?

Task 6.15

Let $f:[a,b]\to\mathbb{R}$ be continuous on [a,b]. Let

$$F(x) = \int_{a}^{x} f(\tau) d\tau.$$

Then $F:[a,b]\to\mathbb{R}$ is differentiable on [a,b], and

$$F'(x) = f(x).$$

The next result is the Fundamental Theorem of Calculus.

Task 6.16

Suppose $f:[a,b]\to\mathbb{R}$ is Riemann integrable on [a,b], and Suppose $f:[a,b]\to\mathbb{R}$ is Riemann integrable on [a,b], and suppose $F:[a,b]\to\mathbb{R}$ is an "anti-derivative" of f(x), i.e., F satisfies:

- 1. F is continuous on [a, b] and differentiable on (a, b),
- 2. F'(x) = f(x) for all $x \in [a, b]$.

Then

$$\int_{a}^{b} f(\tau) d\tau = F(b) - F(a).$$