Discrete Wavelets and Image Processing

Helmut Knaust

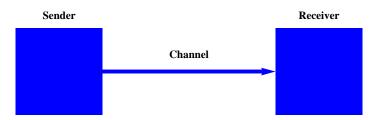
Department of Mathematical Sciences The University of Texas at El Paso El Paso TX 79968-0514

hknaust@utep.edu

October 16, 2009

Course Objectives:

- Get a flavor of the ideas and issues involved in applying mathematics to a relevant engineering problem
- Develop an understanding of the theoretical underpinnings of wavelet transforms and their applications
- Learn how to use a computer algebra system for mathematical investigations, as a computational and visualization aid, and for the implementation of mathematical algorithms


Prerequisites:

- A thorough understanding of Calculus
- Some familiarity with matrices
- Mathematical maturity
- Willingness to learn Mathematica

The Engineering Problem:

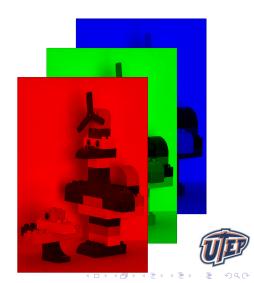
- Transmit digital information through a "narrow channel".
- "Lossy compression": The information received need not be identical to the one sent, but the quality must be "acceptable".

Applications:

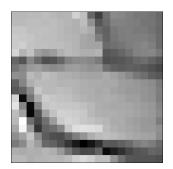
- Photos
- MP3 players
- Real-time two-way audio (cellular telephones)

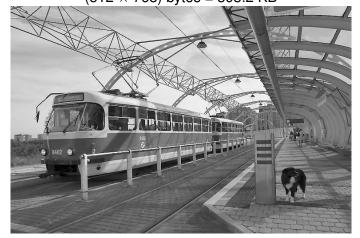
Applications:

- Photos
- MP3 players
- Real-time two-way audio (cellular telephones)
- Streaming video (Netflix, Hulu)


Applications:

- Photos
- MP3 players
- Real-time two-way audio (cellular telephones)
- Streaming video (Netflix, Hulu)
- Real-time two-way audio and video (Skype)


A color image consists of three color channels: Red, Green and Blue


Each pixel in a gray-scale image is represented by an integer between 0 and $255 = 2^8 - 1$ (8 bit = 1 byte)

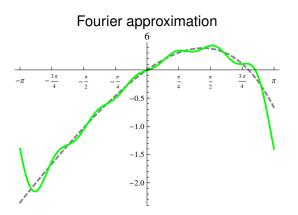
0=black, 255=white

"Raw" storage requirement: (512×768) bytes = 393.2 KB

"Naive compression" — Average of four neighboring pixels: Compression factor: 4

Differentiation Techniques

- Differentiation Techniques
 - Taylor series



- Differentiation Techniques
 - Taylor series
- Integration Techniques

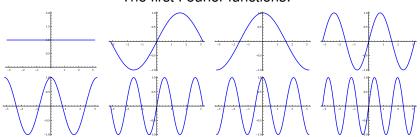
- Differentiation Techniques
 - Taylor series
- Integration Techniques
 - Fourier series
 - Wavelets

 $0.827958\sin(t) - 0.310564\sin(2t) + 0.191515\sin(3t) 0.139372\sin(4t) + 0.109891\sin(5t) - 0.0908419\sin(6t) +$ $0.586021\cos(t) - 0.172359\cos(2t) + 0.079192\cos(3t) 0.0450785\cos(4t) + 0.0290109\cos(5t) - 0.0202076\cos(6t)$

Fourier series of the function f(t):

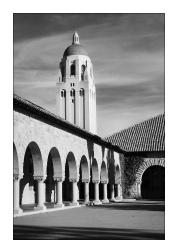
$$\sum_{n=1}^{\infty} a_n \sin nt + \sum_{n=0}^{\infty} b_n \cos nt$$

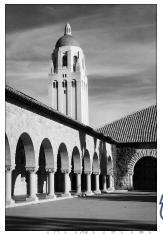
The coefficients are given by


$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin nt \, dt$$

and

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos nt \, dt \quad (n \ge 1)$$

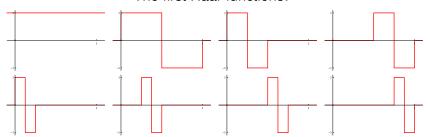

The first Fourier functions:

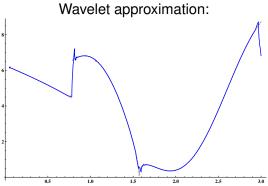


The JPEG algorithm uses Fourier techniques - it employs the "Discrete Cosine Fourier Transform (DCT)".

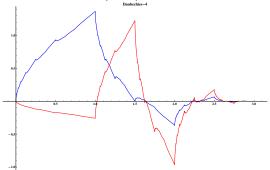
Here is a JPEG example with compression factor 6:

Wavelet techniques




Wavelet pioneers: Alfred Haar (t-r, on the left), Stephane Mallat (b-r), Ingrid Daubechies (t)

The first Haar functions:



... using the Daubechies-4 wavelet

The basis functions are now re-scalings of the two functions below, the "father wavelet" (blue) and the "mother wavelet" (red)

Original image

1st color channel: Y

2nd color channel: C_r

3rd color channel: C_b

Applying the CDF97-wavelet transform to Y once

... and again...

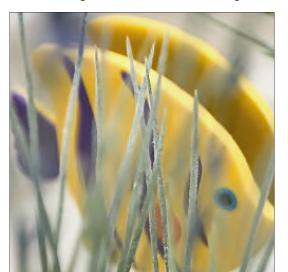
... and one more time:

Quantizing the Y channel

- The sender then encodes this "quantized image" and sends it through the narrow channel to the receiver.
- The compression factor in this example is 10.2.
- The receiver then decompresses the image to be able to view the approximation of the original image.

"Undoing" the transform (by receiver)

Original image, again...



Zooming in on the original image:

Zooming in on the received image:

Any Questions?

