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Reflective thinking turns experience into insight.
John Maxwell

In 1879, Gottlob Frege (1848–1925) completed the first step of his program to put mathematics
on a solid foundation. His idea was that logic should be the foundation of all mathematics, and,
following Gottfried von Leibniz (1646–1716) and George Boole (1815–1864), he created a rigorous
symbolic language, which he called Begriffsschrift, to incorporate all standard principles of logic.
We still use Frege’s symbols in logic today.

Georg Cantor (1845–1918) followed in his footsteps and developed set theory from basic logical
principles. In 1888, Richard Dedekind (1831–1916) took the next step, and presented a construc-
tion of the real numbers based on set theory. This construction will be our main topic.

It should be mentioned that Frege’s program was doomed to fail. Frege’s construction allowed
objects such as “the set of all sets”. Bertrand Russell (1872–1970) used this to construct a paradox
in 1901: Let E denote the set of all sets which do not contain themselves as members. Is E an
element of E? It can’t be, because E contains only sets which are not members of themselves.
Can E fail to be an element of E? No, since if E 6∈ E, then by the definition of the set E, E is an
element in E.

Attempts by Bertrand Russell and Alfred Whitehead (1861–1947) to “fix” these problems in their
monumental Principia Mathematica are generally regarded as artificial and therefore in violation
of the spirit of Frege’s program.

In response, David Hilbert (1862–1943) came up with an alternative program: Use axiomatic
systems as the foundation of mathematics together with meta-mathematics. Mathematicians “do”
mathematics starting from axiomatic systems; meta-mathematics allows to talk about the process
“from the outside” addressing issues such as completeness1 and consistency2 of a given axiomatic
system.

In 1930, Kurt Gödel (1906–1978) showed that this approach was equally flawed: It is not possible
to show (within the axiomatic system) that an axiomatic system which incorporates the arithmetic
of natural numbers is complete (or consistent).

1An axiomatic system is complete, if all statements within the axiomatic system can—in
principle—be shown to be true or to be false.

2An axiomatic system is said to be consistent, if the axioms can be shown not to lead to
contradictions.



1 The Natural Numbers

Definition. Richard Dedekind started by giving the following definition of the set of Natural
Numbers3:

The natural numbers are a set N containing a special element called 0, and a function
S : N → N satisfying the following axioms:

(D1) S is injective4.

(D2) S(N) = N \ {0}.5

(D3) If a subset M of N contains 0 and satisfies S(M) ⊆ M , then M = N.

The function S is called the successor function.

The first two axioms describe the process of counting, the third axiom assures the Principle of
Induction:

Task 1.1
Let P (n) be a predicate with the set of natural numbers as its domain. If

1. P (0) is true, and

2. P (S(n)) is true, whenever P (n) is true,

then P (n) is true for all natural numbers.

3A similar definition of the natural numbers was introduced by Giuseppe Peano in 1889:

The natural numbers are a set N containing a special element called 0, and a function
S : N → N satisfying the following axioms:

(P1) 0 ∈ N.

(P2) If n ∈ N, then S(n) ∈ N.

(P3) If n ∈ N, then S(n) 6= 0.

(P4) If a set A contains 0, and if A contains S(n), whenever it contains n, then the
set A contains N.

(P5) S(m) = S(n) implies m = n for all m,n ∈ N.

4A function f : A → B is called injective if for all a1, a2 ∈ A, f(a1) = f(a2) implies a1 = a2.
5For a function f : A → B, f(A) := {b ∈ B | f(a) = b for some a ∈ A}.
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Arithmetic Properties. Addition of natural numbers is established recursively in the
following way: For a fixed but arbitrary m ∈ N we define

m+ 0 := m

m+ S(n) := S(m+ n) for all n ∈ N

By Axiom (D3), adding n to the fixed m is then defined for all natural numbers n. It is not clear
at this point that the recursive formula defines addition in a unique way. This will be proved later
in Task 1.21.

Task 1.2
If we set S(0) := 1, then S(m) = m+ 1 for all natural numbers m ∈ N.

Use induction for the following:

Task 1.3
Show that addition on N is associative.

Task 1.4
Show that addition on N is commutative.

This last task implies in particular that 0 is the (unique) neutral element with respect to addition:
n+ 0 = 0 + n = n holds for all n ∈ N.

Here is the cancellation law for addition:

Task 1.5
The cancellation law holds for all natural numbers:

m+ k = n+ k implies m = n.
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Multiplication of natural numbers is also defined recursively as follows: For a fixed but arbitrary
m ∈ N we define

m · 0 := 0

m · (n+ 1) := m · n+m for all n ∈ N

Task 1.22 will show that this recursive formula defines multiplication in a unique manner.

Task 1.6
Show that the following distributive law holds for natural numbers:

(m+ n) · k = m · k + n · k.

Task 1.7
Show that 1 is the neutral element with respect to multiplication: For all natural numbers m,

m · 1 = 1 ·m = m.

Task 1.8
Show that multiplication on N is commutative.

Task 1.9
Show that multiplication on N is associative.

Task 1.10
Show that multiplication is zero-divisor free:

m · n = 0 implies m = 0 or n = 0.
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Finally we can impose a total order6 on N as follows: We say that m ≤ n, if there is a natural
number k, such that m+ k = n.

Show that “≤” is indeed a total order:

Task 1.11
“≤” is reflexive7.

Task 1.12
“≤” is anti-symmetric8.

Task 1.13
“≤” is transitive9.

Task 1.14
For all m,n ∈ N, m ≤ n or n ≤ m.

Show the following two compatibility laws:

6A relation ∼ on A is called a total order, if ∼ is reflexive, anti-symmetric, transitive, and has
the property that for all a, b ∈ A, a ∼ b or b ∼ a holds.

7A relation ∼ on A is reflexive if for all a ∈ A, a ∼ a.
8A relation ∼ on A is anti-symmetric if for all a, b ∈ A the following holds: a ∼ b and b ∼ a

implies that a=b.
9A relation ∼ on A is transitive if for all a, b, c ∈ A the following holds: a ∼ b and b ∼ c implies

that a ∼ c.
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Task 1.15
If m ≤ n, then m+ k ≤ n+ k for all k ∈ N.

Task 1.16
If m ≤ n, then m · k ≤ n · k for all k ∈ N.

Last not least, here is the cancellation law for multiplication:

Task 1.17
If m · k = n · k, then m = n or k = 0.

Infinite Sets and the Existence of the Set of Natural Numbers. Do natural
numbers exist? Following Dedekind, we will say that a set M is infinite, if there is an injective
map f : M → M that is not surjective10.

Task 1.18
Show that the set of natural numbers as defined on p. 2 is infinite.

Thus, the existence of the set of natural numbers implies the existence of infinite sets. In fact, we
will show next that the converse also holds:

10A function f : A → B is called surjective, if f(A) = B.
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Theorem 1.1. If there is an infinite set, then there is a model for the natural numbers.

Proof: Let A be an infinite set. Then there is a function S : A → A that is injective, but not
surjective. Thus we can find an a0 ∈ A with a0 6∈ S(A). Let

K = {B ⊆ A | a0 ∈ B and S(B) ⊆ B}

Note that A ∈ K, so K 6= ∅. We set

N =
⋂

B∈K

B.

Observe that N ∈ K. Indeed, a0 ∈ N , since a0 ∈ B for all B ∈ K. Also

S(N) = S

(

⋂

B∈K

B

)

⊆
⋂

B∈K

S(B) ⊆
⋂

B∈K

B = N.

By its definition the set N is thus the smallest element of K.

Finally we show that N with the function S : N → N (as successor function) and a0 (in the role of
0) satisfies Axioms (D1)–(D3).

As the restriction of the injective function S : A → A to N , the function S : N → N is also
injective. Thus (D1) is satisfied.

For (D2) we have to show that S(N) = N \ {a0}. Since a0 6∈ S(N) and S(N) ⊆ N , we obtain
that S(N) ⊆ N \ {a0}. For the remaining subset relation suppose to the contrary that there is a
second element missing from the range of N : there is an element n0 ∈ N satisfying n0 6∈ S(N) and
n0 6= a0. Set N0 = N \ {n0}. Note that a0 ∈ N0 and that S(N0) ⊆ N0. Thus N0 ∈ K. We also
know that N0 $ N , yielding a contradiction.

Now let M ⊆ N , with a0 ∈ M , and satisfying S(M) ⊆ M . Then M ∈ K, and thus, again using the
minimality of N in K, it follows that M ⊇ N . This proves (D3) and completes the proof.

Task 1.19
Present the proof of this Theorem.

Recursion and Uniqueness. Before we give a proof of the “essential” uniqueness of the
natural numbers, we will follow Dedekind and establish the following generalRecursion Principle:

Task 1.20
Let A be an arbitrary set, and let a ∈ A and a function f : A → A be given. Then there exists
a unique map ϕ : N → A satisfying
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1. ϕ(0) = a, and

2. ϕ ◦ S = f ◦ ϕ.

Here is a possible outline for a proof: Consider all subsets K ⊆ N×A with the following properties:

(i) (0, a) ∈ K, and

(ii) If (n, b) ∈ K, then (S(n), f(b)) ∈ K.

Clearly N×A itself has these properties; we can therefore define the smallest such set: Let

L =
⋂

{K ⊆ N×A | K satisfies (i) and (ii)} .

Observe that L indeed has properties (i) and (ii). Then show by induction that for every n ∈ N
there is a unique b ∈ A with (n, b) ∈ L. This property defines ϕ by setting ϕ(n) equal to this b, for
all n ∈ N. Finally note that ϕ : N → A has the two properties in the statement of the task.

The Recursion Principle makes it possible to define a recursive procedure (the function ϕ) via a
formula (the function f).

Task 1.21
Define addition of an arbitrary natural number n and the fixed natural number m using the
Recursion Principle. (You have to specify A and f so that ϕ is the “adding m” function.)

Task 1.22
Define multiplication of an arbitrary natural number n with the fixed natural number m using
the Recursion Principle.

Use the Recursion Principle to show that the set of natural numbers is unique in the following
sense:
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Task 1.23
Suppose that N, S : N → N and 0 satisfy Axioms (D1)–(D3), and that N′, S′ : N′ → N′ and 0′

satisfy Axioms (D1)–(D3) as well.

Then there is a bijection11ϕ : N → N′ such that

1. ϕ(0) = 0′, and

2. ϕ ◦ S = S′ ◦ ϕ.

August 27, 2024

11A function f : A → B is a bijection, if it is both injective and surjective.
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