A Primer on Equivalence Relations

Helmut Knaust

Department of Mathematical Sciences The University of Texas at El Paso El Paso TX 79968-0514

October 18, 2024

Let A be a set. A relation ~ on A is a subset of the Cartesian product $A \times A$. Instead of writing $(a, b) \in \sim$, we will write $a \sim b$.

A relation \sim on A is called an *equivalence relation* if it satisfies the following three properties:

(**Reflexivity**) For all $a \in A$, $a \sim a$.

(Symmetry) If $a \sim b$, then $b \sim a$.

(Transitivity) If $a \sim b$ and $b \sim c$, then $a \sim c$.

Given an element $a \in A$, its equivalence class, denoted by a_{\sim} , is defined as

$$a_{\sim} = \{ b \in A \mid a \sim b \}.$$

 A_{\sim} will denote the set of all equivalence classes:

$$A_{\sim} = \{a_{\sim} \mid a \in A\}.$$

Since each equivalence class is a subset of A (and thus an element of its power set $\mathcal{P}(A)$), we obtain that $A_{\sim} \subseteq \mathcal{P}(A)$.

Given a set A, we say that $\mathcal{B} \subseteq \mathcal{P}(A)$ is a *partition* of A, if it satisfies the following three properties:

- (P1) $B \neq \emptyset$ for all $B \in \mathcal{B}$.
- (P2) $B \cap C = \emptyset$ or B = C for all $B, C \in \mathcal{B}$.
- (P3) $\bigcup_{B \in \mathcal{B}} B = A.$

Problem 1 If ~ is an equivalence relation on a set A, then the set of its equivalence classes A_{\sim} is a partition of A.

Given a partition $\mathcal{B} \subseteq \mathcal{P}(A)$, we can define a relation \sim on A as follows:

 $a \sim b$ if there is a $B \in \mathcal{B}$ with $a \in B$ and $b \in B$.

We will call this the relation induced by the partition \mathcal{B} .

Problem 2 Show that this relation is an equivalence relation.

Problem 3 Let ~ be an equivalence relation. Let \sim^* be the equivalence relation induced by the partition of equivalence classes of ~. Then $\sim^* = \sim$.

Problem 4 Let \mathcal{B} be a partition of A, and let \sim be its induced equivalence relation. Then $\mathcal{B} = A_{\sim}$.

Problem 5 Consider the relation \sim on \mathbb{Z} defined as follows: $a \sim b$ if 5 divides evenly into (a - b). Show that \sim is an equivalence relation.

Problem 6 For this relation find the set of equivalence classes \mathbb{Z}_{\sim} . How many distinct elements does \mathbb{Z}_{\sim} have?

Problem 7 For $x \in \mathbb{R}$, let

$$x + \mathbb{Q} = \{x + q \mid q \in \mathbb{Q}\}.$$

Show that

$$\mathcal{B} = \{ x + \mathbb{Q} \mid x \in \mathbb{R} \}$$

is a partition of $\mathbb R.$

Problem 8 Determine the equivalence relation induced by this partition.

Problem 9 Consider the following equivalence relation \sim on \mathbb{R} :

$$x \sim y \quad \Leftrightarrow \quad x^3 - 3x = y^3 - 3y$$

- 1. Find the equivalence class 5_{\sim} .
- 2. Find the equivalence class 0_{\sim} .
- 3. Find all $x \in \mathbb{R}$ such that x_{\sim} has exactly 2 elements. (This shows that $f(x) = x^3 3x$ is not injective.)
- 4. Define a new function $g: A_{\sim} \to \mathbb{R}$ by setting $g(x_{\sim}) = f(x)$. Show that g is well-defined and injective.