Monotone Functions

Let a < b be real numbers. A function $f: [a,b] \to \mathbb{R}$ is called increasing on [a,b], if x < y implies $f(x) \le f(y)$ for all $x,y \in [a,b]$. It is called STRICTLY INCREASING on [a,b], if x < y implies f(x) < f(y) for all $x,y \in [a,b]$.

Similarly, a function $f:[a,b] \to \mathbb{R}$ is called DECREASING on [a,b], if x < y implies $f(x) \ge f(y)$ for all $x,y \in [a,b]$. It is called STRICTLY DECREASING on [a,b], if x < y implies f(x) > f(y) for all $x,y \in [a,b]$.

A function $f:[a,b]\to\mathbb{R}$ is called MONOTONE on [a,b] if it is increasing on [a,b] or it is decreasing on [a,b].

As we have seen in the last section, a function can fail to have limits for various reasons. Monotone functions, on the other hand, are easier to understand: a monotone function fails to have a limit at a point if and only if it "jumps" at that point. The next task makes this precise.

Problem 1

Let a < b be real numbers and let $f : [a, b] \to \mathbb{R}$ be an **increasing** function. Let $x_0 \in (a, b)$. We define

$$L(x_0) = \sup\{f(y) \mid y \in [a, x_0)\}\$$

and

$$U(x_0) = \inf\{f(y) \mid y \in (x_0, b]\}\$$

Show: f(x) has a limit at x_0 if and only if $U(x_0) = L(x_0)$. In this case

$$U(x_0) = L(x_0) = f(x_0) = \lim_{x \to x_0} f(x).$$

Problem 2

Under the assumptions of the previous task, state and prove a result discussing the existence of a limit at the endpoints a and b.

Problem 3

Let a < b be real numbers and let f : [a, b] be an increasing function. Show that the set

$$\{y \in [a, b] \mid f(x) \text{ does not have a limit at } y\}$$

is finite or countable¹.

You may want to show first that the set

$$D_n := \{ y \in (a, b) \mid (U(y) - L(y)) > 1/n \}$$

is finite for all $n \in \mathbb{N}$.

Let us look at an example of an increasing function with countably many "jumps": Let $g:[0,1] \to [0,1]$ be defined as follows:

$$g(x) = \begin{cases} 0, & \text{if } x = 0\\ \frac{1}{n}, & \text{if } x \in \left(\frac{1}{n+1}, \frac{1}{n}\right] \text{ for some } n \in \mathbb{N} \end{cases}$$

Figure 1 on the following page shows the graph of g(x). Note that the function is well defined, since

$$\bigcup_{n\in\mathbb{N}} \left(\frac{1}{n+1}, \frac{1}{n}\right] = (0, 1],$$

and

$$\left(\frac{1}{m+1},\frac{1}{m}\right]\cap\left(\frac{1}{n+1},\frac{1}{n}\right]=\emptyset$$

for all $m, n \in \mathbb{N}$ with $m \neq n$.

Problem 4

Show the following:

- 1. The function g(x) defined above fails to have a limit at all points in the set $D := \left\{ \frac{1}{n} \mid n \in \mathbb{N} \right\}$.
- 2. The function g(x) has a limit at all points in the complement $[0,1] \setminus D$.

¹A set is called COUNTABLE, if all of its elements can be arranged as a sequence y_1, y_2, y_3, \ldots with $y_i \neq y_j$ for all $i \neq j$.

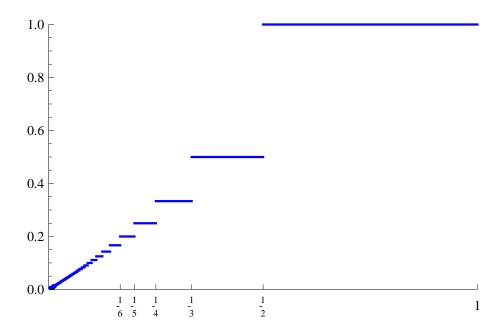


Figure 1: The graph of a function with countable many "jumps"