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Toward a More Complete List of
Completeness Axioms

Holger Teismann

Abstract. We first discuss the Cut Axiom, due to Dedekind, which is one of the many equiv-
alent formulations of the completeness of the real numbers. We point out that the Cut Axiom
is equivalent to four “cornerstone theorems” of single-variable Real Analysis, namely, the
Intermediate, Extreme, and Mean Value Theorems, as well as Darboux’s Theorem.

We then describe some general properties of ordered fields, in particular the Archimedean
Property and its consequences, and provide a list of statements that are equivalent to com-
pleteness and may thus serve as alternate completeness axioms.

1. INTRODUCTION. Various ways of “axiomatizing” the completeness of the real
numbers are possible; popular ones (in textbooks on elementary real analysis) in-
clude the existence of suprema and the convergence of Cauchy sequences (plus the
Archimedean Property). Another possibility is the Cut Axiom, which was originally
formulated by Dedekind [7], and which has recently been introduced into elementary
analysis as a simple and intuitive way of defining completeness [1, 13, 14, 22].

The Cut Axiom is easily seen to be equivalent to the Intermediate Value Theorem
(IVT) [22]. In the first part of this note, we point out that the Cut Axiom, and thus the
completeness of the real numbers, is also equivalent to other “cornerstone theorems”
of single-variable real analysis, namely, the Extreme Value Theorem (EVT), the Mean
Value Theorem (MVT), and Darboux’s Theorem (DT). Any of these statements may
therefore be used to “axiomatize” the completeness of the real numbers.

In fact, completeness turns out to be equivalent to many other statements of real
analysis, which are typically presented as theorems. The second part of this paper
is devoted to illustrating this. We first set the stage by broadening the view slightly
and describing some general properties of totally ordered fields, in particular the
Archimedean Property and its consequences. We then provide a (still very much
incomplete) list of possible completeness axioms and assorted proofs.

PART I.

2. THE CUT AXIOM. One possible way of defining the completeness of the real
numbers is given by the Cut Axiom (CA) [1, 13, 14, 18, 22]. For any pair of subsets
A, B 6= ∅ satisfying :

∀a ∈ A, b ∈ B a < b (1)

and
R = A ∪ B, (2)

there exists a number c ∈ R (called a cut point for A, B) such that

∀a ∈ A, b ∈ B a ≤ c ≤ b. (3)
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Remarks. (a) Properties (1) and (3) may be abbreviated by A < B and A ≤ c ≤ B,
respectively. (b) A pair of sets A, B 6= ∅ satisfying (1) and (2) will be called a cut of
R. (c) It is easy to show that cut points are unique (if two cut points c1 6= c2 were to
exist, c1+c2

2 would belong to A ∩ B, which is impossible in view of (1)). (d) In the first
part of this paper, our use of the letter R for the real numbers is somewhat lax in that
we also use it for what might be called “proto-reals”, i.e., (potentially) non-complete
versions of the real numbers. We will be more careful later in Part II.

Cuts of the rational numbers are well known as Dedekind cuts, and form the basis
of one of the standard constructions of the real numbers. However, it is interesting to
note that in [7] Dedekind actually introduces and uses his cuts for both the construction
of the real numbers (“the creation of irrational numbers”) and the axiomatic definition
of completeness (which he mostly refers to as continuity)1. After describing the “fact
that that every point p of the straight line produces a separation of the same into two
portions [. . . ]” he continues

I find the essence of continuity in the converse, i.e., in the following principle:
If all points of the straight line fall into two classes such that every point in

the first class lies to the left of every point of the second class, then there exists
one and only one point which produces this division of all points into two classes
[. . . ].

Moreover, he leaves no doubt that he considers this “principle” an axiom (i.e., an
unprovable “basic truth” in the parlance of B. Bolzano [4]; see Section 4 below):

[. . . ] I am utterly unable to adduce any proof of its correctness, nor has any
one the power. The assumption of this property of the line is nothing else than an
axiom by which we attribute to the line its continuity [. . . ].

It is not too difficult to see that the Cut Axiom is equivalent to the existence of suprema
(ES), which is one of the standard ways of formulating completeness and which is,
maybe somewhat confusingly, often referred to as Dedekind’s completeness axiom.
Although the proof is available in the literature (see, e.g., [3] and [1] for a proof of
“⇒”), we include it here for completeness.

Proposition 1. The statements (CA) and (ES) are equivalent.

Proof.
“⇒” Let S ⊂ R be nonempty and bounded above, and define B := {b ∈ R | b is an

upper bound for S} 6= ∅, and A := R \ B 6= ∅. Then (2) and A < B hold by definition.
Let c ∈ R be the (unique) cut point guaranteed by (CA). To show that c is a (the) least
upper bound for S, assume first that c ∈ A. Then, since c is not an upper bound for
S, there exists an s ∈ S such that c < s; so letting a = c+s

2 implies a ∈ A (a < s
means that a cannot be an upper bound for S), and a ∈ B (since a > c and c is a cut
point), which is impossible. Thus c ∈ B, which means that c is an upper bound for S.
Moreover, for any ε > 0, we have c− ε < c, hence c− ε ∈ A, which yields that c− ε
is not an upper bound. This completes the proof of “⇒”.

1We do not mean to imply, however, that Dedekind made an explicit attempt at an axiomatization of anal-
ysis. We agree with one of the anonymous referees of this paper, who feels that “if Dedekind had been asked
to provide an axiomatization of analysis, he would have used the Cut Principle as his axiom of continuity, but
he did not provide such an axiomatization.”
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“⇐” Let A, B be a cut. Since A < B, the set A is (nonempty and) bounded above
and hence c := sup(A) exists by (ES). To show that c is a (the) cut point for A, B, let
a ∈ A and b ∈ B. Since sup(A) is an upper bound for A, we immediately get a ≤ c.
Moreover, if b were < c, a number a′ ∈ A would exist such that b < a′ < c, which is
obviously impossible, as A < B. Thus b ≥ c, which completes the proof.

Propp [22] notes that “the Cut Axiom is very similar to Axiom 3 from Tarski’s
axiomatization of the reals.” In fact, Tarski’s axiom (TA3) arises by simply drop-
ping condition (2) from CA, and Tarski himself regarded it as a simplified version
of Dedekind’s: “This axiom—in a slightly more complicated formulation—originates
with the German mathematician R. Dedekind [. . . ]” [29].

Proposition 2. The statements (CA) and (TA3) are equivalent.

Proof.
“⇐” is clear.
“⇒” In view of Proposition 1, it is sufficient to show that (ES) implies (TA3).

However, the proof of this statement is identical to the proof of “⇐” above (property
(2) is never used in that proof).

Finally, it is also well-known that the completeness of the real numbers is equivalent
to their connectedness (see, e.g., [20, Fact 1.1]). Here we will content ourselves with
proving just one implication:

Proposition 3. If (CA) does not hold, then there exists a cut of open sets.

Proof. Since CA does not hold, there exists a cut A, B that does not possess a cut point.
We will show that both sets A and B are open. First choose c ∈ A; then (−∞, c] ⊂ A.
If there was no a ∈ A such that a > c, then a ≤ c for all a ∈ A and c < b for all b ∈ B
(since c ∈ A), so c would be a cut point. As a result, there must be an a ∈ A such that
a > c, which implies [c, a] ⊂ A and so c ∈ (−∞, a) ⊂ A. This shows that A is open.
The argument for B is similar.

3. FOUR “PILLARS” OF CALCULUS. By this we mean the following theorems
of the standard analysis curriculum.

In the following, let f : [a, b] → R be an arbitrary continuous function (where
a, b ∈ R, a < b).

1. Intermediate Value Theorem (IVT). f has the intermediate value property (i.e.,
for any number y ∈ R such that f (a) ≤ y ≤ f (b) or f (b) ≤ y ≤ f (a), there
exists a number c ∈ [a, b] such that f (c) = y).

2. Mean Value Theorem (MVT). If f is differentiable on (a, b), then there exists a
number c ∈ (a, b) such that f ′(c) = ( f (b)− f (a))/(b − a).

3. Extreme Value Theorem (EVT). There exists a number c ∈ [a, b] such that
f (x) ≤ f (c) for all x ∈ [a, b].

4. Darboux’s Theorem (DT). If f is differentiable on [a, b], then f ′ has the inter-
mediate value property.

The Cut Axiom (and hence completeness per se) turns out to be equivalent to each of
the statements above. This fact is based on the following simple corollary of Proposi-
tion 3.
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Lemma 1. Assume that (CA) does not hold and let A, B be a cut of open sets. Then,
if g, h : R→ R are continuous (resp. differentiable) functions, the function

f (x) =

{
g(x), x ∈ A
h(x), x ∈ B

is also continuous (resp. differentiable).

To prove that the statements (CA) and (#) are equivalent, where # ∈ {IVT, MVT,
EVT, DT}, it will be sufficient to prove “⇐”; the implications “⇒” are part of the
standard analysis curriculum, once the completeness of the reals has been established.
In each case, the proof of “⇐” will be accomplished by a suitable choice of functions
g, h such that f provides a counterexample for the statement in question (assuming
that the Cut Axiom does not hold).

In each of the arguments below, assume that the Cut Axiom does not hold; let A, B
be a cut such that both sets A and B are open and a ∈ A, b ∈ B.

3.1. The IVT does not hold, if (CA) is not satisfied. We choose g ≡ 0, h ≡ 1; the
function f , defined by

f (x) =

{
0, x ∈ A ∩ [a, b]
1, x ∈ B ∩ [a, b],

is continuous, but it does not have the intermediate value property.

3.2. The MVT does not hold, if (CA) is not satisfied. We use the same function as
in 3.1; f is differentiable on (a, b) and satisfies f ′ ≡ 0. However,

f (b)− f (a)

b − a
=

1

b − a
> 0,

which completes the argument.

3.3. The EVT does not hold, if (CA) is not satisfied. Let g(x) = x and h(x) ≡
a − 1; i.e.,

f (x) =

{
x, x ∈ A ∩ [a, b]
a − 1, x ∈ B ∩ [a, b].

This function is continuous but does not attain its (global) maximum in [a, b]. Assume
it does at c ∈ [a, b]. Clearly, c cannot be in B ∩ [a, b], since f (x) = x ≥ a > a − 1 =
f (c) for all c ∈ B ∩ [a, b] and x ∈ A ∩ [a, b]; so c ∈ A ∩ [a, b]. However, since A
is open, there exists an a′ ∈ A ∩ [a, b] such that a′ > c, which implies f (a′) = a′ >
c = f (c). This yields a contradiction.

3.4. DT does not hold, if (CA) is not satisfied. We use the same function as in 3.3;
f is differentiable on [a, b]. However, since f ′([a, b]) = {0, 1}, the derivative clearly
does not have the intermediate value property.
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3.5. Counterexamples in the rationals. If the underlying (incomplete) field is as-
sumed to be the rationals Q, additional and/or more concrete counterexamples can be
given [8, Chapter 1, Examples 11 a–d]:

(a) the sets A, B ⊂ Q in 3.1 may be specialized to A = (−∞,
√

2) and B =
(
√

2,∞);
(b) another function failing to have the intermediate value property is given by f :

Q ∩ [1, 2] → Q, f (x) = x2 (the value 2 between 1 = f (1) and 4 = f (2) is not
assumed);

(c) an unbounded continuous function f : Q ∩ [1, 2] → Q is given by f (x) =
1/(x2

− 2);
(d) a bounded continuous (even uniformly continuous) function f : Q ∩ [0, 1] → Q

not attaining its maximum in Q ∩ [0, 1] is given by f (x) = x − x3 (as a function
R→ R the functions assumes its maximum at x = 1/

√
3 ∈ R \Q).

4. DISCUSSION. The four “Pillars of Calculus” of this section (IVT, MVT, EVT,
DT) are existence theorems, which can be difficult to teach to beginning students. Stu-
dents often have a very hard time appreciating the content/meaning of these statements,
or even seeing any point in stating them at all. In fact, one first-year student recently
told me that her high school teacher had called these statements2 “silly theorems”,
presumably because they are so obvious/self-evident that only “silly” mathematicians
would make any fuss about them.

The fact that these “silly theorems” turn out to be equivalent to the completeness of
the real numbers may offer a philosophical “explanation” as to why they almost seem
to be too obvious. After all, the completeness of the reals itself appears completely
self-evident and only becomes “a problem” when somebody (like B. Bolzano [4]) sets
out to prove self-evident facts such as the Intermediate Value Theorem.

In fact, Bolzano appears to have been the first to recognize the connection between
the Intermediate Value Theorem and completeness. He also regarded the Intermediate
Value Theorem as so self-evident that its mere confirmation would not have warranted
a proof [4]:

[. . . ] while the geometrical truth to which we refer here is [. . . ] extremely
evident, and therefore needs no proof in the sense of confirmation, it nonethe-
less needs justification. For its component concepts are obviously so combined
that one cannot hesitate for a moment to say that it is not one of those simple
truths which are called basic propositions, or basic truths [. . . ]. It is a theorem or
consequent-truth [. . . ] and, therefore, [. . . ] it must be proved by derivation from
these other truths.

Ironically, the Intermediate Value Theorem in the end turns out to be a simple or basic
truth (i.e., an axiom) after all, being equivalent to the completeness of the reals.

PART II.

We now adopt a slightly more general point of view than the one taken in Part I, in
that we consider (totally) ordered fields in general, rather than focussing on the real
numbers specifically. The two most interesting and far-reaching properties of ordered
fields are the Archimedean Property and (Dedekind) Completeness.

2Most likely, referring only to the first three, as Darboux’s Theorem is almost never mentioned in high
school.

February 2013] A MORE COMPLETE LIST OF COMPLETENESS AXIOMS 103



5. ORDERED FIELDS. Most of the material in this section is available in standard
texts such as [3, 10, 11, 15, 17, 30]. A recent introduction to ordered fields emphasizing
their completeness properties is [9].

5.1. Definitions and Notation. A (totally) ordered field F is a (commutative) field
with an order relation < such that the known rules for operating on inequalities are
satisfied. Every ordered field has an absolute value |.| given by |x | = max{x,−x},
which satisfies the usual properties such as the triangle inequality. It is easy to see that
the field Q is canonically imbedded into F; so we consider Q an ordered subfield of F.

We use the usual notation for intervals such as [a, b] = {x ∈ F | a ≤ x ≤ b},
(−∞, b) = {x ∈| x < b}, etc., as well as the definitions F+ := {x ∈ F | x > 0},
I (F) := {x ∈ F | ∀n ∈ N |x | < 1

n }, and L(F) := {x ∈ F | ∀n ∈ N |x | > n}. The
elements in I (F) and L(F) are called infinitesimals3 and infinitely large, respectively.
Numbers in F \ (I (F) ∪ L(F)) are called finite. Note that x ∈ I (F) \ {0} if and only if
1/x ∈ L(F).

A subset S ⊂ F is called bounded above if there exists a number M ∈ F such that
x ≤ M for all x ∈ S (similarly, bounded below and bounded “per se”).

Every ordered field F is equipped with the order topology, a basis of which is given
by the open intervals (a, b), a, b ∈ F with a ≤ b (the closed intervals [a, b] also form
a basis). All topological properties such as continuity, convergence, and connectedness
will always be understood with respect to the order topology of F.

As in Part I, we define a cut of F as a pair of nonempty subsets A, B ⊂ F such
that (1) and (2) are satisfied (with R replaced by F). A cut is called a gap if it does
not possess a cut point. The sets A and B of a gap are both open (see the proof of
Proposition 3). A cut A, B is called regular if

∀ε ∈ F+ ∃a ∈ A, b ∈ B b − a < ε.

A cut that is not regular is called irregular. Obviously, an irregular cut A, B satisfies
B − A ≥ δ for some δ ∈ F+ (where B − A = {b − a | a ∈ A, b ∈ B}). From this it
easily follows that every irregular cut is a gap.

An ordered field is called complete if it satisfies the Cut Axiom, which may now be
succinctly expressed as the absence of gaps.

5.2. Examples. The rational numbers Q and the real numbers R are ordered fields;
the complex numbers C and the p-adic numbers Qp are not ordered fields.

The fields Q and R are both Archimedean (see Section 6 below). The simplest ex-
ample of a non-Archimedean ordered field containing R as a subfield is the field R(x)
of rational functions in the variable x with coefficients in R. This is the fraction field
of the ordered domain R[x] of polynomials over R. A rational function P(x)

Q(x) ∈ R(x)
is positive if the product of the trailing coefficients of the polynomials P and Q are
positive.4 With respect to this order, the function f (x) = x is a positive infinitesimal

3According to the convention adopted here, zero is an infinitesimal.
4This is the unique order for R(x) such that the imbedding R[x] ↪→ R(x) is an order-morphism, if the

integral domain R[x] is equipped with the order given by the trailing coefficients (i.e.,
∑n

k=m ak xk > 0 if and
only if am > 0). Typically, R[x] is considered with the order defined by the leading coefficients (

∑n
k=m ak xk >

0 if and only if an > 0). However, the convention adopted here has the advantage that R[x] is an ordered
subring of R[[x]]. For information on ordered domains, their polynomial rings, and (ordered) fraction fields,
see, e.g., [17]; the fact that R(x) (with the “traditional” order) is an ordered field is also the topic of [12,
Exercise 1.31].
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(showing that R(x) is not Archimedean; see Proposition 4 (ii) following); indeed, for
any n ∈ N, the trailing coefficient of x − 1

n is − 1
n < 0, which implies x < 1

n .
The fraction field of the ordered domain R[[x]] of formal power series over R

is the field of formal Laurent series R((x)) =
{∑

∞

k=m ak x k
| ak ∈ R,m ∈ Z

}
, where∑

∞

k=m ak x k > 0 if and only if am > 0 [17]. This field is non-Archimedean (series∑
∞

k=m ak x k whose order m is ≥ 1 are infinitesimals) and contains R. In addtion, it
is Cauchy complete; i.e., it has the property that every Cauchy sequence converges (for
a proof of the Cauchy completeness of R((x)), see, e.g., [16]).

Finally, we mention the Levi–Civita field R, which can be defined as the set of
all functions f : Q→ R such that {q ∈ Q | f (q) 6= 0} ∩ (−∞, r) is finite for every
r ∈ Q, with f > 0 if and only if f (min{q ∈ Q | f (q) 6= 0}) > 0. This field is non-
Archimedean, contains R, and is Cauchy complete. In addition, it is “real-closed”,
which means that R+ = { f 2

| f ∈ R \ {0}} and every odd-degree polynomial with
coefficients inR has a root, or, equivalently, that every polynomial has the intermediate
value property. For proofs and more information on R, see [2].

6. THE ARCHIMEDEAN PROPERTY.

Definition. An ordered field F satisfies the Archimedean Property (AP) if and only if

∀x ∈ F ∃n ∈ N |x | < n.

A field that satisfies (AP) is called Archimedean; otherwise it is called non-Archime-
dean.

An ordered field F is said to have countable cofinality if there exists a countable
subset L ⊂ F that is “cofinal”, i.e., that satisfies

∀x ∈ F ∃λ ∈ L |x | < λ.

Clearly, every Archimedean ordered field has countable cofinality, but the converse is
not true. In fact, all the fields in Section 5.2 have countable cofinality (for instance, the
set L =

{(
1
x

)n
| n ∈ N

}
⊂ R((x)) is countable and cofinal), but R(x), R((x)), and R

are all non-Archimedean.

Standing Assumption. For the remainder of our work, we will always assume that
the ordered fields under consideration have countable cofinality.5

Proposition 4. For any ordered field F the following statements are equivalent.

(i) F is Archimedean.

(ii) I (F) = {0}.
(iii) L(F) = ∅.
(iv) Q is dense in F (i.e., between any two distinct numbers lies a rational number).

(v) F can be imbedded into R (i.e., considered an ordered subfield of R).

(vi) The sequence
(

1
n

)
n≥1

is convergent.

(vii) Every cut of F is regular.

(viii) Every increasing sequence that is bounded above is a Cauchy sequence.

5This assumption is not always necessary. However, in order to avoid having to distinguish cases, we make
it “globally” for the remainder of this paper.
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(ix) Every uniformly continuous function maps bounded sets to bounded sets.6

(x) Every monotone function is Darboux integrable.7

Proof. The fact that the statements (i)–(vi) are equivalent is standard material in the
theory of ordered fields (see, e.g., [6, 9, 11]). So we focus on statements (vii)–(x).

(i) ⇒ (vii). This can be shown by using a classical bisection idea; let A, B be
a cut and a ∈ A, b ∈ B. We define sequences (an) ⊂ A, (bn) ⊂ B, and (cn) ⊂ R
recursively by a0 = a, b0 = b; cn = (an + bn)/2; an+1 = cn if cn ∈ A; an+1 = an if
cn /∈ A; bn+1 = bn if cn ∈ A; bn+1 = cn if cn /∈ A. Then bn − an = 2−n(b − a) by
construction. So, given ε ∈ F+, by (AP) and the elementary estimate 2−n < 1/n, there
exists n ∈ N such that bn − an = 2−n(b − a) < ε.
¬(i)⇒¬(vii). See Lemma A in Appendix A1.
(i)⇒ (viii). This follows by standard elementary analysis.
¬(i) ⇒ ¬(viii). If F is not Archimedean, it possesses a positive infinitesimal δ ∈

I (F) ∩ F+. Let xn := nδ. Then (xn) is (strictly) increasing and bounded (by 1). How-
ever, xn+1 − xn = δ > 0 for all n ∈ N, so (xn) is not Cauchy.

(i) ⇒ (ix). The proof is standard fare in elementary analysis. We nevertheless
present it here to emphasize the fact that it does not require completeness. Let I ⊂ F
be bounded, f : I → F uniformly continuous, and δ ∈ F+ such that | f (x)− f (y)| <
1 for all x, y ∈ I, |x − y| < δ. Assume that f (I ) is not bounded. Then there ex-
ists a sequence (xn) ⊂ I such that | f (xn)| ≥ n for all n ∈ N. By selecting a mono-
tonic subsequence if necessary, we may assume that (xn) is monotonic. Since it is
bounded, by (AP) and (viii), it is a Cauchy sequence, so there exists an n ∈ N such
that |xn+k − xn| < δ for all k ∈ N. Thus

∀k ∈ N n + k ≤ | f (xn+k)| ≤ | f (xn)| + | f (xn+k)− f (xn)| < | f (xn)| + 1,

which is a contradiction to (AP).
¬(i)⇒ ¬(ix). Assume that F is not Archimedean. We will show that we can con-

struct a function that is

uniformly continuous, defined on a bounded set, but unbounded.

To this end, let xn = 1− 1
n (n ≥ 1). Define

I := {x ∈ [0, 1) | ∃n ∈ N x ≤ xn} =

⋃
n≥1

[xn, xn+1] ⊂ [0, 1)

with yn =
xn+1+xn

2 ∈ (xn, xn+1), and choose a positive infinitesimal δ. Moreover, for
each n ∈ N, let Ãn, B̃n be an irregular gap satisfying

yn ∈ Ãn, (4a)

∀a ∈ Ãn, b ∈ B̃n b − a ≥ δ, and (4b)

∀y ∈ [yn,∞) y − yn finite implies that y ∈ B̃n (4c)

(such cuts exist by Lemma A in Appendix A1). Note that (4a) and (4c) imply An :=

Ãn ∩ [xn, xn+1] 6= ∅ and Bn := B̃n ∩ [xn, xn+1] 6= ∅, respectively, since yn ∈ (xn, xn+1)

and xn+1 − yn is finite. Finally, let (λn)n∈N ⊂ F be a cofinal sequence (which exists,

6The countable cofinality of F is only used in the proof of the implication “(ix)⇒ (i)”.
7For information on integration in ordered fields, see Appendix A2.
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since F is assumed to have countable cofinality). Now define f : I → F by

∀n ∈ N, x ∈ [xn, xn+1] f (x) =

{
λn, x ∈ An

λn+1, x ∈ Bn.

Clearly, f is (well-defined and) unbounded. It remains to be shown that it is uniformly
continuous; this will certainly follow if we can show that f (x) − f (y) = 0 for all
x, y ∈ I such that |x − y| < δ. Assume that x ∈ [xn, xn+1] and, without loss of gen-
erality, x < y. Then, by (4b), x ∈ An and y ∈ Bm is not possible for any m ≥ n; so
either x, y ∈ An or x, y ∈ Bn or x ∈ Bn, y ∈ An+1. In the first case we have f (xn) =

f (yn) = λn; in the second and third case, f (xn) = f (yn) = λn+1.
(i) ⇒ (x). The proof is standard again, but we want to demonstrate where the

Archimedean Property comes into play. Assume without loss of generality that f :
[a, b] → F is increasing. For n ∈ N, let 1x = b−a

n , x j = j1x ( j = 0, . . . , n), I j =

[x j−1, x j ) ( j = 1, . . . , n − 1), and In = [xn−1, xn]. Then f (x j−1) ≤ f (x) ≤ f (x j ) for
x ∈ I j and the functions g(x) =

∑n
j=1 f (x j−1)χI j

(x) and h(x) =
∑n

j=1 f (x j )χI j
(x)

are step functions satisfying g(x) ≤ f (x) ≤ h(x). (Here χS denotes the charac-
teristic function of a set S ⊂ F.) Moreover,

∫
g = 1x

∑n
j=1 f (x j−1) and

∫
h =

1x
∑n

j=1 f (x j ), hence
∫

h −
∫

g = b−a
n ( f (b) − f (a)) −→ 0 (as n → ∞), where

the limit property follows from (AP) and (vi).
¬(i)⇒ ¬(x). Since F possesses an irregular gap by part (vii), this implication is a

direct consequence of Lemma D (ii) in Appendix A2.

Remarks. (a) Note that statement (x) is false if “Darboux” is replaced with “Rie-
mann.” For instance, the function f : Q ∩ [1, 2] → Q,

f (x) =

{
1, x <

√
2

0, x >
√

2

is fairly easily seen not to be Riemann integrable (see Lemma D (i)), although Q is
Archimedean. This is also an example of a function that is Darboux integrable but not
Riemann integrable.

(b) It is often proved in elementary real analysis that (ES) implies (AP). In view
of Proposition 1, this obviously implies “(CA) ⇒ (AP).” However, a direct proof of
this implication is fairly straightforward and can be given to undergraduate analysis
students as an exercise [22].

Define B = {r ∈ F | ∃n ∈ N 1/n < r}, A = F \ B, and let c be the (unique) cut
point. It is easy to see that it is sufficient to show that c = 0. It is also easy to see
that c < 0 is impossible. Assume that c > 0. Then 0 < c/2 < c < 2c, which implies
c/2 ∈ A and 2c ∈ B. So there exists n ∈ N such that 1/n < 2c. However, this means
that 1/(4n) < c/2; i.e., c/2 ∈ A ∩ B, which yields a contradiction.

7. COMPLETENESS.

7.1. The List. Each of the following properties may equivalently be used to “axiom-
atize” the completeness of ordered fields (with countable cofinality8):9

8This assumption is only used in the proof that statements 14, 15, and 16 each imply CA.
9The list could be expanded in a trivial manner by adding “technical variations” of some of the statements

given here, such as the compactness of closed and bounded intervals (variation on the Bolzano–Weierstrass
property), the statement that the only connected subsets of the reals are the intervals (connectedness), or the
fact that continuous functions map intervals to intervals (IVT).
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1. Cut Axiom,
2. Tarski’s Axiom 3,
3. Connectedness,
4. Principle of Real Induction [5, Theorem 4],
5. Existence of suprema/infima of bounded nonempty sets,
6. Convergence of bounded monotonic sequences,
7. Bolzano–Weierstrass Theorem,
8. Nested Interval Property + Archimedean Property,
9. Intermediate Value Theorem,

10. Mean Value Theorem,
11. Extreme Value Theorem,
12. Darboux’s Theorem,
13. Continuous functions defined on closed and bounded intervals that are one-to-

one (injective) are open [20, Corollary 1.3] (see also [19]),
14. Continuous functions defined on closed and bounded intervals are bounded,
15. Continuous functions defined on closed and bounded intervals are uniformly

continuous,
16. Continuous functions defined on closed and bounded intervals are Riemann in-

tegrable,
17. Cauchy–Completeness (CC) + Archimedean Property,
18. Every Darboux integrable function is Riemann integrable + Archimedean

Property.

7.2. Assorted Proofs. The equivalences 1–3 and 5–12 are either standard knowledge
or dealt with in Part I of this paper. For 4 and 13, we refer the reader to the cited
literature [5, 20, 19]. So we focus on items 14–18.

As in Part I, it often suffices to construct counterexamples (assuming that (CA) does
not hold), since the implications “(completeness)⇒ (#)” (where # ∈ {15, . . . , 18}) are
common knowledge from a first course in real analysis.

7.2.1. A continuous function on a closed and bounded interval that is unbounded and
not uniformly continuous (proves “¬(CA) ⇒ ¬(14)” and “¬(CA) ⇒ ¬(15)”). Let
A, B be a gap and (an) ⊂ A a strictly increasing sequence as in Lemma B of Ap-
pendix A1, a = a0, and b ∈ B. Moreover, let (λn)n∈N ⊂ F+ be a cofinal sequence
(which exists by the countable cofinality of F). Without loss of generality, we may as-
sume that (λn) is increasing and that the sequence λn+1 − λn is also unbounded. (This
can be accomplished easily by considering the sequence

∑n
k=1 λk of partial sums if

necessary.) Now define

∀n ∈ N, x ∈ [an, an+1] g(x) = λn +
λn+1 − λn

an+1 − an
(x − an),

h ≡ 0, and

f (x) =

{
g(x), x ∈ [a, b] ∩ A
h(x), x ∈ [a, b] ∩ B.

Note that g : [a, b] ∩ A→ F is well defined because of property (5d) in Appendix A1.
To see that f is continuous, it is sufficient to verify that g is continuous, since A, B
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is a gap (cf. Lemma 1 in Section 3). But this directly follows from the fact that g is
piecewise linear and continuous at the breakpoints an .

Since f is unbounded by construction, it remains to be shown that f is not uni-
formly continuous. If F is Archimedean, this is a direct consequence of Prop. 4 (ix).
So assume that F is not Archimedean and let δ be a positive infinitesimal such that
an+1 − an = δ (this is possible by Lemma B in Appendix A1). Then, for any δ1 ∈

(0, δ], an + δ1 ∈ (an, an+1] and so

f (an + δ1)− f (an) =
(λn+1 − λn)δ1

an+1 − an
= (λn+1 − λn)

δ1

δ
,

which is unbounded, so f is not uniformly continuous.

7.2.2. Statement (16) does not hold, if (CA) is not satisfied. The previous example
also proves this implication, as Riemann (as well as Darboux) integrable functions are
bounded. However, there are even functions that are bounded, uniformly continuous,
and monotone that fail to be Riemann integrable. See Lemma D in Appendix A2 and
Section 7.3 below.

7.2.3. (CA) is equivalent to (17). (CA)⇒ (CC)+ (17). F is Archimedean by Remark
(b) at the end of Section 6. Let (xn) be a Cauchy sequence. Since it is sufficient to show
that some subsequence converges, we may assume without loss of generality that (xn)

is monotonic. Assume it is increasing, and define A = {a ∈ F | ∃n ∈ N a < xn} and
B = F \ A. By (CA), the cut A, B has a cut point c; we claim that limn→∞ xn = c. Let
ε ∈ F+. Since F is Archimedean, the cut A, B is regular (Prop. 4 (vii)). So there exist
a ∈ A and b ∈ B such that b − a < ε and further an n ∈ N such that a < xn ≤ c ≤ b,
which implies that 0 ≤ c − xm ≤ c − xn ≤ b − a < ε for all m ≥ n.
¬(CA) + (AP)⇒¬(CC). See Lemma B in Appendix A1.
The fact that (AP) is a necessary condition follows from the existence of Cauchy-

complete non-Archimedean fields; R((x)) and R in 5.2 are such fields. (Note that, in
view of Remark (b) in Section 6, non-Archimedean fields cannot be complete.)

7.2.4. (CA) is equivalent to (18). See Lemma F in Appendix A3. (AP) is necessary
because the Scott-completion (see Lemma G) of a non-Archimedean ordered field
is a non-Archimedean field in which every Darboux integrable function is Riemann
integrable (cf. Lemma E).

7.3. More (counter)examples. The function f : Q ∩ [1, 2] → Q in Section 3.5
(c) is continuous, unbounded, and therefore not uniformly continuous (since Q is
Archimedean; see Proposition 4 (ix)).

Additional interesting (counter)examples in non-Archimedean fields may be found
in [26, 28].

In Q, examples of uniformly continuous, bounded and monotone functions (defined
on closed and bounded intervals) that are not Riemann integrable may be constructed
by using rational functions; one such example is the function f : Q ∩ [0, 1] → Q,
f (x) = 1/(1 + x2). As a function, R→ R f is integrable, with

∫
f = π

4 ∈ R \ Q.
However, assuming that f is integrable as a function Q → Q implies

∫
f ∈ Q, a

contradiction. Note, however, that this function is Darboux integrable, since it is de-
creasing (Proposition 4 (x)).

One final remark concerns integration in non-Archimedean fields. As defined here
(see Appendix A2), it might actually be of limited use, as, for instance, not even
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the identity function f (x) = x on the interval [0, 1] is integrable. This is what mo-
tivates Shamseddine and Berz [27] to develop measure and integration theory for non-
Archimedean fields in a different way.

APPENDICES.

A1. Three technical lemmas.

Lemma A. Let F be a non-Archimedean ordered field. Then, for any x0 ∈ F and any
positive infinitesimal δ ∈ I (F) ∩ F+, there exists an irregular gap A, B satisfying

x0 ∈ A, (5a)

∀a ∈ A, b ∈ B b − a ≥ δ, and (5b)

∀y ∈ [x0,∞) y − x0 finite implies that y ∈ B. (5c)

Proof. Let an = x0 + nδ, and let A and B be defined by

A := {x ∈ F | ∃n ∈ N x < an} and B := F \ A = {y ∈ F | ∀n ∈ N y ≥ an},

respectively. Clearly, F = A ∪ B and A ∩ B = ∅. Moreover, if a ∈ A and b ∈ B, then
there exists an n ∈ N such that a < an = x0 + nδ < x0 + (n + 1)δ ≤ b, which implies
that b− a > δ. If c ∈ F is a cut point for A, B, then it belongs to either A or B. Assume
the former implies b − c > δ for all b ∈ B; since b = c + δ

2 ∈ B (c is cut point), this
gives δ

2 > δ, which is absurd. Assuming c ∈ B will result in a contradiction as well,
so no cut point can exist and A, B is a gap.

Since x0 ∈ A is obvious, it remains to be shown that (5c) holds. To this end, assume
that y − x0 is positive and finite and that y ∈ A. Then there exists n ∈ N such that
y < x0 + nδ and, since y − x0 is finite, there is a k ∈ N such that 1

k < y − x0. Thus
1
k < y − x0 < nδ⇒ 1

kn < δ, which is impossible, since δ is an infinitesimal.

Remark. The proof also guarantees the existence of a strictly increasing, non-
convergent sequence (an) ⊂ A such that

∀x ∈ A ∩ (a0,∞)∃!n ∈ N with x ∈ (an, an+1]. (5d)

Lemma B. Let F be an incomplete ordered field. Then there exists a gap A, B and
a strictly increasing, non-convergent sequence (an) ⊂ A satisfying (5d). Moreover, if
F is Archimedean, (an) is a Cauchy sequence. If F is not Archimedean, (an) can be
assumed to satisfy an+1 − an = δ for a positive infinitesimal δ ∈ I (F) ∩ F+.

Proof. In view of the previous lemma and remark, only the Archimedean case needs
to be considered. We will show that a sequence (an)n∈N with the specified properties
exists in fact for every gap A, B. Since F is Archimedean, A, B is regular (cf. Prop.
4 (vii)); thus, by Lemma C below, there exists a strictly increasing sequence (an) ⊂

A and a strictly decreasing sequence (bn) ⊂ B such that limn→∞ bn − an = 0. The
sequence (an) is a Cauchy sequence by Prop. 4 (viii). To verify (5d), assume that
there is an x ∈ A such that x > an for all n ∈ N. Then x ∈ (an, bn) for all n ∈ N.
However, this is impossible, as it would imply that x is a (the) cut point for A, B. To
see this, let a ∈ A and assume that ε := a − x > 0. Then there exists n ∈ N such that
bn − an < ε, which implies that a = x + ε > bn ∈ B, yielding a contradiction. Since
the assumption x − b > 0 for b ∈ B is equally impossible, we obtain A ≤ x ≤ B.
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Lemma C. Let F be an ordered field (with countable cofinality) and A, B a regular
gap. Then there exists a strictly increasing sequence (an) ⊂ A and a strictly decreasing
sequence (bn) ⊂ B such that limn→∞ bn − an = 0.

Proof. Let (λn)n∈N ⊂ F+ be an increasing cofinal sequence and εn := 1/λn . Then
limn→∞ εn = 0. Let a0 ∈ A, b0 ∈ B such that b0 − a0 < ε0 and let an+1 ∈ (an,∞) ∩

A, bn+1 ∈ (−∞, bn) ∩ B such that bn+1 − an+1 < εn+1. (Note that (an,∞) ∩ A and
(−∞, bn) ∩ B are non-empty, since A and B are open.) This recursively defines se-
quences (an) and (bn) with the desired properties.

A2. Integration in Ordered Fields. Let F be an ordered field (not necessarily
Archimedean or complete), a, b ∈ F, a < b, and f : [a, b] → F a function.

We follow the definitions of J.M.H. Olmsted [21], but modify his terminology.
We call f Darboux integrable10 if, for any ε ∈ F+, there exists g ∈ L f and h ∈ U f

such that ∫
h −

∫
g < ε,

where L f and U f are the sets of step functions g and h satisfying g(x) ≤ f (x) and
h(x) ≥ f (x), respectively, and the integrals have the obvious interpretation.

Furthermore, we say that f is Riemann integrable11 if L f 6= ∅, U f 6= ∅ and there
exists a unique number J ∈ F such that

∀g ∈ L f , h ∈ U f

∫
g ≤ J ≤

∫
h.

In this case, we set
∫

f = J .
Olmsted shows that every Riemann integrable function is Darboux integrable [21,

Theorem 4]. However, the opposite is not true. In fact, it is not too difficult to verify
that the function

f (x) =

{
1, x ∈ [a, b] ∩ A
0, x ∈ [a, b] ∩ B

(6)

is Darboux but not Riemann integrable, if A, B is a regular gap (see Lemma D (i) be-
low). In fact, there are continuous—even uniformly continuous—bounded and mono-
tone functions that are not Riemann integrable.

Lemma D. Let F be an ordered field (with countable cofinality), A, B a gap, a ∈ A,
b ∈ B, and let f : [a, b] → F the function given by (6).

(i) If A, B is regular, f is Darboux integrable but not Riemann integrable.

(ii) If A, B is irregular, f is not Darboux integrable (and hence not Riemann inte-
grable).

Proof.
(i) Select sequences (an) ⊂ A and (bn) ⊂ B as in Lemma C and define gn(x) =

χ[a,an)(x) ∈ L f and hn(x) = χ[a,bn)(x) ∈ U f (where χS denotes the characteristic

10Olmsted calls this Riemann integrable.
11“Has a Riemann integral” in Olmsted’s terminology.
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function of a set S ⊂ F). Then
∫

hn −
∫

gn = bn − an −→ 0 (as n → ∞), which
shows that f is Darboux integrable. However, if J ∈ F were the Riemann integral of
f , it would satisfy J ∈ (an, bn) for all n ∈ N, which, as in the proof of Lemma B
above (with x replaced by J ), would imply that J would be the cut point for A, B.
This yields a contradiction.

(ii) Let g ∈ L f and h ∈ U f . Without loss of generality, g and h are based on the
same partition {x0, x1, . . . , xm} of [a, b]; i.e., g(x) =

∑m
j=1 g jχ(x j−1,x j )(x) and h(x) =∑m

j=1 h jχ(x j−1,x j )(x) for all x ∈ [a, b] \ {x0, x1, . . . , xm} (the values of f and g at the
points x0, . . . xm are irrelevant). Now let k ∈ {1, . . . ,m} be the unique index such that
xk−1 ∈ A and xk ∈ B, and let δ ∈ F+ be a number such that B − A ≥ δ. Then g j ≤

1 ≤ h j for j ≤ k − 1, g j ≤ 0 ≤ h j for j ≥ k + 1 and gk ≤ 0, hk ≥ 1, since g(x) ≤
f (x) ≤ h(x). Thus∫

h −
∫

g =
m∑

j 6=k

(h j − g j )︸ ︷︷ ︸
≥0

(x j − x j−1)+ (hk − gk)︸ ︷︷ ︸
≥1

(xk − xk−1)︸ ︷︷ ︸
≥δ

≥ δ.

This shows that f is not Darboux integrable.

A3. Scott Completion.

Definition. An ordered field G is called Scott complete if it does not have any regular
gaps.

Lemma E. Let F be an ordered field (with countable cofinality). Then the following
statements are equivalent.

(i) F is Scott-complete.

(ii) Every Darboux integrable function is Riemann integrable.

Proof.
(i)⇒ (ii) (see [21, Theorem 9]). Let f : [a, b] → F be a Darboux integrable func-

tion, A := {x ∈ F | ∃g ∈ L f x ≤
∫

g}, and B := {x ∈ F | ∃h ∈ U f x ≥
∫

h}.
If there is an x ∈ F \ (A ∪ B), then

∫
g < x <

∫
h for all g ∈ L f and h ∈ U f and

x = J is the Riemann integral (such an x is unique, since f is Darboux integrable).
So assume that F = A ∪ B. If there is an x ∈ A ∩ B, then there exists g0 ∈ L f and
h0 ∈ U f such that

∫
g ≤

∫
h0 ≤ x ≤

∫
g0 ≤

∫
h for all g ∈ L f and h ∈ U f , which

again implies that x = J is the Riemann integral. So we may assume that F = A ∪ B
with A ∩ B = ∅, which means that A, B is a cut (A ≤ B holds by definition). A, B is
regular, since (by the Darboux integrability of f ), for any ε ∈ F+, there exist g ∈ L f

and h ∈ U f such that
∫

h −
∫

g < ε (note that
∫

g ∈ A and
∫

h ∈ B). So A, B cannot
be a gap, since F is Scott-complete; the cut point, J , for A, B satisfies

∫
g ≤ J ≤

∫
h

for all g ∈ L f and h ∈ U f , and it is also unique by the Darboux-integrability of f .
¬(i)⇒¬(ii). See Lemma D (i).

Since, by Proposition 4 (vii), a Scott-complete Archimedean field cannot have any
gaps at all and is thus complete, the following statement immediately follows.

Lemma F. [21, Theorem 5] Let F be an Archimedean ordered field. Then the prop-
erty that every Darboux integrable function is Riemann integrable is equivalent to the
completeness of F.
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Lemma G. [25, Theorem 1] Let F be an ordered field. Then there exists an ordered
field G such that

(i) F is a dense subfield of G, and

(ii) G is Scott-complete.

(The construction of the Scott-completion G may also be found in [21], where “Scott-
complete” is called “quasi-complete”.)
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Added in Proof: After completion and acceptance of this paper, the author became
aware of related works by Propp [23] (to be published in this JOURNAL and Riemen-
schneider [24] (in German), which also provide various characterizations of complete-
ness. Among the 37 statements given in [24] are the ones listed in Section 7.1, with the
exception of items 2, 4, 12, 13, and 18 (and property 15 is only listed for Archimedean
fields). Moreover, while Riemenschneider’s list appears longer partially because “tech-
nical variations” (in the sense of footnote 9 on page 107) are listed separately,12 it also
contains interesting additional formulations of completeness. The statements are orga-
nized in thematic groups, which Riemenschneider calls “circles”. Within each group
equivalence is established by a “circle13 argument” of the form (A)⇒ (B)⇒ · · · ⇒
(A). By contrast, the organizing principle of the present paper is more reminiscent of a
tree in that the various formulations of completeness are traced back to a single “root”
property, the Cut Axiom.
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