

Suppose that addition and multiplication have already been defined for the set of natural numbers \mathbb{N} .

1. We define a relation \sim on $\mathbb{N} \times \mathbb{N}$ as follows:

$$(p, q) \sim (p', q') \Leftrightarrow p + q' = p' + q.$$

Show that \sim defines an equivalence relation on $\mathbb{N} \times \mathbb{N}$.

2. It then makes sense to define equivalence classes $(p, q)_{\sim}$:

$$(p, q)_{\sim} := \{(p', q') \in \mathbb{N} \times \mathbb{N} \mid (p', q') \sim (p, q)\}.$$

The set of all these equivalence classes is denoted by $(\mathbb{N} \times \mathbb{N})_{\sim}$.

Find all elements in the equivalence class $(2, 5)_{\sim}$. What do all these pairs of natural numbers have in common?

Find all elements in the equivalence class $(4, 2)_{\sim}$. What do all these pairs of natural numbers have in common?

3. One can then identify the set of integers \mathbb{Z} with this set $(\mathbb{N} \times \mathbb{N})_{\sim}$. Which equivalence class corresponds to the integer 0? What about the equivalence classes corresponding to the integers 1 and -3, respectively?
4. How can one define addition of two integers? More precisely, what should be the meaning of

$$(p, q)_{\sim} + (p', q')_{\sim}?$$

Is your definition well-defined¹?

5. Show that addition as defined in 4. is commutative.
6. What is the neutral element in $(\mathbb{N} \times \mathbb{N})_{\sim}$ with respect to addition?
7. Given $(p, q)_{\sim} \in (\mathbb{N} \times \mathbb{N})_{\sim}$, what is the inverse element of $(p, q)_{\sim}$ with respect to addition?
8. How can one define multiplication of two integers? More precisely, what should be the meaning of

$$(p, q)_{\sim} \cdot (p', q')_{\sim}?$$

Is your definition well-defined?

9. Verify that $(2, 5)_{\sim} \cdot (1, 2)_{\sim} = (5, 2)_{\sim}$.

¹You have to check that your definition does not depend on the representatives chosen from the two equivalence classes.