Multi-Resolution Analysis for the Haar Wavelet

Helmut Knaust

Department of Mathematical Sciences
University of Texas at El Paso
El Paso TX 79968-0514
March 26, 2009
Last edits: October 10, 2012

1 The space $L^{2}([0,1))$ and its scalar product

We will denote by $L^{2}([0,1))$ the vector space of all functions $f:[0,1) \rightarrow \mathbb{R}$ satisfying 1

$$
\begin{equation*}
\int_{0}^{1}|f(x)|^{2} d x<\infty \tag{1}
\end{equation*}
$$

On $L^{2}([0,1))$ one can define a SCALAR PRODUCT as follows:

$$
\begin{equation*}
<f, g>=\int_{0}^{1} f(x) \cdot g(x) d x \tag{2}
\end{equation*}
$$

Similarly to the case of \mathbb{R}^{n}, the scalar product automatically defines a NORM on $L^{2}([0,1))$ via the definition

$$
\begin{equation*}
\|f\|=\sqrt{<f, f>}=\sqrt{\int_{0}^{1}|f(x)|^{2} d x} \tag{3}
\end{equation*}
$$

Finally, we say that a sequence $\left(f_{n}\right)$ of functions in $L^{2}([0,1))$ converges to a function $f(x) \in$ $L^{2}([0,1))$ In THE L^{2}-SENSE, if

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|=0 \tag{4}
\end{equation*}
$$

2 Orthonormal sets

We say that a set B of elements in $L^{2}([0,1))$ is an orthonormal set, if the scalar product of each element in B with itself equals 1, and the scalar product of two different elements in B is equal to 0 :

1. $\langle f, f\rangle=1 \quad$ for all $f \in B$

[^0]$$
\text { 2. }<f, g>=0 \quad \text { for all } f, g \in B \text { satisfying } f \neq g
$$

An orthonormal set B is automatically linearly independent. ${ }^{2}$ Our ultimate goal will be to find a particular orthonormal set $B=\left\{f_{1}(x), f_{2}(x), \ldots\right\}$ such that we can approximate every function $f(x) \in L^{2}([0,1))$ by linear combinations of the elements in B; more precisely, given $f(x) \in L^{2}([0,1))$, we will be able to find scalars $\left(a_{k}\right)$ such that the sequence

$$
\begin{equation*}
\left(\sum_{k=1}^{n} a_{k} f_{k}(x)\right) \tag{5}
\end{equation*}
$$

converges to $f(x)$ in the L^{2}-sense. ${ }^{3}$

3 The Haar scaling function

We denote by $\phi(x)$ the following function:

$$
\phi(x)= \begin{cases}1, & \text { if } x \in[0,1) \tag{6}\\ 0, & \text { if } x<0 \text { or } x \geqslant 1\end{cases}
$$

$\phi: \mathbb{R} \rightarrow \mathbb{R}$ is called the HaAR scaling function, or the Haar "father" wavelet. Throughout we will identify $\phi(x)$ with its restriction to $[0,1)$.

Let V_{0} denote the one-dimensional vector space spanned by $\phi(x)$; this is nothing else but the set of all functions constant on $[0,1)$ (and vanishing elsewhere).

Next we consider the functions $2^{1 / 2} \phi(2 x)$ and $2^{1 / 2} \phi(2 x-1)$. They span a two-dimensional vector space, denoted by V_{1}, consisting of all functions on $[0,1)$ that are constant both on $\left[0, \frac{1}{2}\right)$ and on $\left[\frac{1}{2}, 1\right)$. Note that $V_{0} \subset V_{1}$.

[^1]Then for any k with $k \in\{1, \ldots, n\}$

$$
<a_{1} g_{1}+a_{2} g_{2}+\cdots+a_{n} g_{n}, g_{k}>=<0, g_{k}>=0
$$

On the other hand,

$$
<a_{1} g_{1}+a_{2} g_{2}+\cdots+a_{n} g_{n}, g_{k}>=a_{1}<g_{1}, g_{k}>+a_{2}<g_{2}, g_{k}>+\cdots+a_{n}<g_{n}, g_{k}>=a_{k}<g_{k}, g_{k}>=a_{k}
$$

So $a_{k}=0$ for all k.
${ }^{3}$ We basically already know one example of such a set: It is known that the set

$$
F=\left\{\frac{1}{\sqrt{2 \pi}}, \frac{1}{\sqrt{\pi}} \cos (x), \frac{1}{\sqrt{\pi}} \cos (2 x), \ldots, \frac{1}{\sqrt{\pi}} \sin (x), \frac{1}{\sqrt{\pi}} \sin (2 x), \ldots\right\}
$$

forms an orthonormal set with which we can approximate all elements in $L^{2}([-\pi, \pi])$ in this fashion.

Figure 1: The Haar scaling function $\phi(x)$

Figure 2: The Haar scaling function $\phi(x)$ restricted to $[0,1)$

Continuing in this fashion, we can define a 2^{j}-dimensional vector space V_{j}, spanned by the functions

$$
2^{j / 2} \phi\left(2^{j} x\right), 2^{j / 2} \phi\left(2^{j} x-1\right), \ldots, 2^{j / 2} \phi\left(2^{j} x-\left(2^{j}-1\right)\right) .
$$

The vector space V_{j} consists of all functions on $[0,1)$ that are constant on intervals of the form $\left[k 2^{-j},(k+1) 2^{-j}\right)$ for $k=0,1,2, \ldots 2^{j}-1$. Figure 5 shows the function $2^{3 / 2} \phi\left(2^{3} x-5\right)$ contained in V_{3}. We have $V_{0} \subset V_{1} \subset \cdots \subset V_{j} \subset \cdots$.

You should have wondered by now why the factor $2^{j / 2}$ is included. The answer is straightforward: this way the functions form an orthonormal set!

Exercise 1

Show that the set $\left\{2^{j / 2} \phi\left(2^{j} x\right), 2^{j / 2} \phi\left(2^{j} x-1\right), \ldots, 2^{j / 2} \phi\left(2^{j} x-\left(2^{j}-1\right)\right)\right\}$ forms an orthonormal set of functions in the vector space V_{j}.

Figure 3: The function $2^{1 / 2} \phi(2 x)$

Figure 4: The function $2^{1 / 2} \phi(2 x-1)$

4 Using V_{j} to approximate functions in $L^{2}([0,1))$

A function $f \in V_{j}$ has the form

$$
\begin{equation*}
f(x)=a_{0} 2^{j / 2} \phi\left(2^{j} x\right)+a_{1} 2^{j / 2} \phi\left(2^{j} x-1\right)+\cdots+a_{2^{j}-1} 2^{j / 2} \phi\left(2^{j} x-\left(2^{j}-1\right)\right) . \tag{7}
\end{equation*}
$$

Since the functions on the right side form an orthonormal set, the coefficients a_{k} are given by the formula

$$
\begin{equation*}
a_{k}=<f(x), 2^{j / 2} \phi\left(2^{j} x-k\right)>=\int_{0}^{1} f(x) \cdot 2^{j / 2} \phi\left(2^{j} x-k\right) d x \tag{8}
\end{equation*}
$$

Exercise 2

Take the scalar product with $2^{j / 2} \phi\left(2^{j} x-k\right)$ on both sides of (7) to verify Formula (8).

Figure 5: The function $2^{3 / 2} \phi\left(2^{3} x-5\right)$

Figure 6: Approximating a function by an element in V_{4}
The same formula for the coefficients can be used to approximate functions in $L^{2}([0,1))$ by a function in V_{j}. Let $f(x)$ be a function in $L^{2}([0,1))$, and set

$$
\begin{equation*}
f_{j}(x)=a_{0} 2^{j / 2} \phi\left(2^{j} x\right)+a_{1} 2^{j / 2} \phi\left(2^{j} x-1\right)+\cdots+a_{2^{j}-1} 2^{j / 2} \phi\left(2^{j} x-\left(2^{j}-1\right)\right), \tag{9}
\end{equation*}
$$

where the coefficients a_{k} are computed via Formula (8).
Alfred Haar (1885-1933) showed in 1910 that, if $f(x)$ is continuous, the sequence $\left(f_{j}(x)\right)$ converges to $f(x)$ uniformly. If, on the other hand, $f(x) \in L^{2}([0,1))$, then

$$
\lim _{j \rightarrow \infty}\left\|f-f_{j}\right\|=0
$$

Figures 6 and 7 show the approximation of a function (dashed line) by an element in V_{4} and V_{7}, respectively (solid line).

Figure 7: Approximating a function by an element in V_{7}
While we have found nice orthonormal bases for all the vector spaces V_{j}, we still fall short of our goal: If we take two basis elements from different V_{j} 's, their scalar product will not necessarily equal zero, because the intervals where the basis elements are equal to 1 may overlap.

5 The Haar wavelet

Let's see whether we can remedy this deficiency step by step. We want to find a function $\psi(x)$ in V_{1}, such that the linear combinations of $\phi(x)$ and $\psi(x)$ span the vector space V_{1}, and such that the following conditions are satisfied:

1. $\langle\phi, \psi\rangle=0$
2. $\langle\psi, \psi\rangle=1$

Since $\psi \in V_{1}$ we can find scalars a_{1} and a_{2} such that

$$
\begin{equation*}
\psi(x)=a_{1} \sqrt{2} \phi(2 x)+a_{2} \sqrt{2} \phi(2 x-1) . \tag{10}
\end{equation*}
$$

Note also that

$$
\begin{equation*}
\phi(x)=\phi(2 x)+\phi(2 x-1) . \tag{11}
\end{equation*}
$$

Using (10) and (11), the first condition becomes

$$
\begin{equation*}
<\phi, \psi>=<\phi(2 x)+\phi(2 x-1), a_{1} \sqrt{2} \phi(2 x)+a_{2} \sqrt{2} \phi(2 x-1)>=a_{1} / \sqrt{2}+a_{2} / \sqrt{2}=0 \tag{12}
\end{equation*}
$$

so $a_{2}=-a_{1}$. The second condition yields:

$$
\begin{equation*}
<\psi, \psi>=<a_{1} \sqrt{2} \phi(2 x)+a_{2} \sqrt{2} \phi(2 x-1), a_{1} \sqrt{2} \phi(2 x)+a_{2} \sqrt{2} \phi(2 x-1)>=a_{1}^{2}+a_{2}^{2}=1 \tag{13}
\end{equation*}
$$

Solving (12) and (13) for a_{1} and a_{2}, we obtain ${ }^{4}$

$$
\psi(x)=\phi(2 x)-\phi(2 x-1)=\left\{\begin{align*}
1, & \text { if } x \in\left[0, \frac{1}{2}\right) \tag{14}\\
-1, & \text { if } x \in\left[\frac{1}{2}, 1\right) \\
0, & \text { otherwise }
\end{align*}\right.
$$

The function $\psi(x)$ is called the HaAr "mother" wavelet; its graph is depicted in Fig-

Figure 8: The Haar mother wavelet $\psi(x)$
ure 8.
We will denote the vector space spanned by the function $\psi(x)$ as W_{0}. It is customary to write

$$
\begin{equation*}
V_{1}=V_{0} \oplus W_{0} \tag{15}
\end{equation*}
$$

Here the symbol \oplus is used to indicate that each element in V_{1} can be written in a unique way as the sum of an element in V_{0} and an element in W_{0} and that the scalar product of any element in V_{0} with any element in W_{0} equals zero.

Exercise 3

Show that the functions $\sqrt{2} \psi(2 x)$ and $\sqrt{2} \psi(2 x-1)$ are elements in V_{2}.

[^2]
Exercise 4

Show that the set $\{\sqrt{2} \psi(2 x), \sqrt{2} \psi(2 x-1)\}$ forms an orthonormal set.

Exercise 5

Show that $<\sqrt{2} \psi(2 x), f(x)>=0$ for all functions $f(x) \in V_{1}$. (The same result holds for $\sqrt{2} \psi(2 x-1)$.)

These two functions are shown in Figures 9 and 10, respectively.

Figure 9: The function $\sqrt{2} \psi(2 x)$ in W_{1}
Let's denote the vector space spanned by $\sqrt{2} \psi(2 x)$ and $\sqrt{2} \psi(2 x-1)$ as W_{1}. The three exercises above show that

$$
\begin{equation*}
V_{2}=V_{1} \oplus W_{1}=V_{0} \oplus W_{0} \oplus W_{1}, \tag{16}
\end{equation*}
$$

meaning once again that each element in V_{2} can be written in a unique way as the sum of an element in V_{1} and an element in W_{1} and that the scalar product of any element in V_{1} with any element in W_{1} equals zero.

Continuing in this fashion, we can write

$$
\begin{equation*}
V_{j+1}=V_{j} \oplus W_{j} \tag{17}
\end{equation*}
$$

where W_{j} is the vector space spanned by the functions

$$
2^{j / 2} \psi\left(2^{j} x\right), 2^{j / 2} \psi\left(2^{j} x-1\right), \ldots, 2^{j / 2} \psi\left(2^{j} x-\left(2^{j}-1\right)\right)
$$

Figure 10: The function $\sqrt{2} \psi(2 x-1)$ in W_{1}

The formula

$$
V_{j}=V_{0} \oplus W_{0} \oplus W_{1} \oplus \cdots \oplus W_{j-1}
$$

is called Multi-Resolution Analysis.

6 A discrete example

A function in V_{4} is determined by its 16 coefficients. Suppose the vector of coefficients is $(180,167,244,190,159,242,176,192,168,250,175,219,193,232,200,234)$

The corresponding function is shown in Figure 11. Note that the coefficients are multiplied by the factor 4 along the way. How can we write this function as a sum of a function in V_{3}

Figure 11: A function in V_{4}
and a function in W_{3} ? Let's start with the component in V_{3}. Since for $k \in\{0,1, \ldots, 7\}$

$$
\begin{equation*}
\left.4 \phi(16 x-2 k)+4 \phi(16 x-(2 k+1))=2^{1 / 2} \cdot 2^{3 / 2} \phi(8 x-k)\right), \tag{19}
\end{equation*}
$$

we obtain that the coefficient b_{k} of the function in V_{3} is given for $k \in\{0,1, \ldots, 7\}$ by

$$
\begin{equation*}
b_{k}=\frac{a_{2 k}+a_{2 k+1}}{\sqrt{2}} \tag{20}
\end{equation*}
$$

where a_{k} denotes the k th coefficient of the function in V_{4}. In other words, we obtain the vector representing the function in V_{3} by multiplying the vector in (18) by the matrix

$$
\left(\begin{array}{llllllll}
\frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \tag{21}\\
\frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

In our particular case, the vector (rounded to the nearest integer) representing the function in V_{3} is given by

$$
\begin{equation*}
(245,307,284,260,296,279,301,307) . \tag{22}
\end{equation*}
$$

Figure 12 shows the function in V_{4} and its "blurry" counterpart in V_{3}.
What about the component of our function in W_{3} ? Since for $k \in\{0,1, \ldots, 7\}$

$$
\begin{equation*}
\left.4 \phi(16 x-2 k)-4 \phi(16 x-(2 k+1))=2^{1 / 2} \cdot 2^{3 / 2} \psi(8 x-k)\right) \tag{23}
\end{equation*}
$$

we obtain that the coefficient c_{k} of the function in W_{3} is given by

$$
\begin{equation*}
c_{k}=\frac{a_{2 k}-a_{2 k+1}}{\sqrt{2}} \tag{24}
\end{equation*}
$$

where, again, a_{k} denotes the k th coefficient of the function in V_{4}. In other words, this time we obtain the vector representing the function in W_{3} by multiplying the vector in (18) by

Figure 12: A function in V_{4} (black) and its "orthogonal projection" onto V_{3} (dashed)
the matrix

$$
\left(\begin{array}{llllllll}
\frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \tag{25}\\
-\frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -\frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -\frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -\frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -\frac{1}{\sqrt{2}} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -\frac{1}{\sqrt{2}} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -\frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{1}{\sqrt{2}}
\end{array}\right)
$$

In our particular case, the vector (rounded to the nearest integer) representing the function in W_{3} is given by

$$
\begin{equation*}
(9,38,-59,-11,-58,-31,-28,-24) \tag{26}
\end{equation*}
$$

Figure 13 shows this as a function in W_{3}.
If we are "joining" the vectors in (22) and (26), we obtain

$$
\begin{equation*}
(245,307,284,260,296,279,301,307,9,38,-59,-11,-58,-31,-28,-24) \tag{27}
\end{equation*}
$$

Since our function in V_{4} is the sum of its orthogonal projections onto V_{3} and W_{3}, we will be able to retrieve the vector in (18) from the vector (27). The cumulative energy plots of

Figure 13: The "orthogonal projection" of our function onto W_{3} (dashed)
both vectors are shown in Figure 14, indicating that the vector in (27) has a higher energy concentration than the original vector (18) and thus may be considered as a compressed version of the vector in (18).

Figure 14: The original vector (18) is shown dashed, while vector (27) is depicted solid.

Exercise 6

This section has shown how to compute vector (27) from vector (18). Can we reverse
the procedure? Suppose our procedure produces as the vector in (27)

$$
(200,350,351,130,115,215,122,308,15,35,47,23,-12,-32,67,-23)
$$

What does the corresponding original vector (18) look like?

7 Concluding Remarks

We have outlined a general procedure: (1) start with a father wavelet $\phi(x),(2)$ construct an increasing sequence of vector spaces

$$
V_{1} \subset V_{2} \subset \cdots \subset V_{j} \subset \cdots
$$

capable of approximating functions in $L^{2}([0,1))$, (3) construct the corresponding mother wavelet, and (4) ultimately produce a multi-resolution analysis

$$
V_{j}=V_{0} \oplus W_{0} \oplus W_{1} \oplus \cdots \oplus W_{j-1}
$$

Our choice for $\phi(x)$ was the constant 1 . As you will see later in the course, in the 1980's other possible candidates emerged.

Acknowledgment. This exposition is based on material in A First Course in Wavelets with Fourier Analysis by Albert Boggess \& Francis J. Narcowich.

[^0]: ${ }^{1}$ More precisely: those (equivalence classes of) measurable functions on $[0,1$) whose square is Lebesgueintegrable. Since we will ultimately be interested in the discrete case anyway, you can just think of bounded piecewise-continuous functions with the Riemann integral.

[^1]: ${ }^{2}$ Indeed assume that for some real numbers $a_{1}, a_{2}, \ldots, a_{n}$ and some distinct elements $g_{1}, g_{2}, \ldots, g_{n}$ in B,

 $$
 a_{1} g_{1}(x)+a_{2} g_{2}(x)+\cdots+a_{n} g_{n}(x)=0 \text { for all } x
 $$

[^2]: ${ }^{4}$ There are actually two solutions; it suffices for us to consider the solution for which $a_{1}>0$. Why?

