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1. Introduction. Isometries are distance-preserving maps. We will restrict our attention to
complex functions: A function f : C→ C is called an isometry if it satisfies

|f(w)− f(z)| = |w − z| for all w, z ∈ C.

It is quite easy to check that the following examples are isometries:

1. For a fixed z0 ∈ C, the function given by f(z) = z + z0 translates z by z0.

2. For a fixed θ ∈ R, the function f(z) = zeiθ rotates z around the origin by the angle θ.

3. The function f(z) = z reflects z about the real axis.

Isometries are injective functions. Indeed assume that f : C → C is an isometry, and that w 6= z.
Then 0 6= |w−z| = |f(w)−f(z)|, so f(w) 6= f(z). It is not as easy to prove directly that isometries
in the complex plane are also surjective functions, but this fact will follow from our discussion
below.

Isometries are used to define congruence in geometry: two geometric figures A and B are called
congruent to each other, if there is an isometry f : C→ C with f(A) = B.

2. Classification of isometries in the complex plane. We will first consider isometries with
two fixed points:

Lemma. Let h : C → C be an isometry that satisfies h(0) = 0 and h(1) = 1. Then h(z) = z or
h(z) = z.

Proof: Using the fact that h : C → C is an isometry, the two fixed point conditions yield the
following equations:

|h(z)| = |z| (1)

|h(z)− 1| = |z − 1| (2)

Squaring both sides of (2) yields

(h(z)− 1)(h(z)− 1) = (z − 1)(z − 1).

Using the distributive property we can write this as

h(z)h(z)− h(z)− h(z) + 1 = zz − z − z + 1;

in other words
|h(z)|2 − h(z)− h(z) + 1 = |z|2 − z − z + 1.



Using (1) it follows that
h(z) + h(z) = z + z,

so h(z) and z have the same real part. Once we know that Reh(z) = Re z, we conclude from (1)
also that Imh(z) = ± Im z. Thus h : C→ C is given by h(z) = z or by h(z) = z, as desired. �

Theorem. Let f : C → C be an arbitrary isometry. Then there exist z0 ∈ C and θ ∈ R such that
f(z) = z0 + zeiθ or f(z) = z0 + zeiθ.

Proof: We set z0 = f(0), and then define g : C→ C by

g(z) = f(z)− z0.

The function g satisfies g(0) = 0.
Next consider g(1). Since g is an isometry, it follows that

|g(1)| = |g(1)− g(0)| = |1− 0| = 1,

so there is a θ ∈ R such that g(1) = eiθ. We define h : C→ C by

h(z) = g(z)e−iθ.

This function satisfies the two conditions h(0) = 0 and h(1) = 1, and thus, by the Lemma, h(z) = z
or h(z) = z.

Working our way back we see that g : C → C has the form g(z) = zeiθ or g(z) = zeiθ, and
finally we indeed obtain that f : C→ C is of the form f(z) = z0 + zeiθ or f(z) = z0 + zeiθ. �

We will call these isometries of Type I, and of Type II respectively.

3. Reflections. A Type I isometry is a rotation around the origin followed by a translation; we
will show next that a Type II isometry is a reflection about a line through the origin followed by a
translation.

Suppose r : C→ C is the isometry that reflects each complex number z about the line through
the origin with angle of incline α (see Figure 1). Rotating clockwise by α moves this line to the real
axis.
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Figure 1: Rotating the line and the points by the angle −α.
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Consequently r(z)e−iα and ze−iα are a complex conjugate pair:

r(z)e−iα = ze−iα,

so we obtain that
r(z) = (z e−iα)eiα = ze2iα.

To summarize, reflection about the line through the origin with angle of incline α is reflection
about the real axis followed by a rotation about the origin by angle 2α (and vice versa).

4. The group of isometries. The set D of isometries f : C → C with the binary operation of
composition forms a group. In particular, the composition of two Type I isometries (or two Type II
isometries) is a Type I isometry, while the composition of a Type I isometry with a Type II isometry
yields a Type II isometry. The neutral element of this group is the identity map given by f(z) = z.
The inverse element of a Type I isometry of the form f(z) = z0 + zeiθ is the Type I isometry

g(z) = (z − z0)e−iθ = −z0e−iθ + ze−iθ.

Similarly, a Type II isometry of the form f(z) = z0 + zeiθ has as its inverse the following Type II
isometry:

g(z) = (z − z0)e−iθ = −z0eiθ + zeiθ.

Let us observe that
D0 = {f ∈ D | f(0) = 0}

forms a subgroup of D. Its elements are rotations of the form f(z) = zeiθ or reflections of the form
f(z) = zeiθ. Note that isometries f ∈ D0 are R-linear maps:

f(c1z1 + c2z2) = c1f(z1) + c2f(z2) for all c1, c2 ∈ R, z1, z2 ∈ C.

We will see in the next section how to represent these isometries in D0 as real 2× 2 matrices.

5. Isometries in D0 as orthogonal matrices. Recall that a square matrix A is orthogonal if
the product with its transpose yields the identity matrix. For 2× 2 matrices we obtain the matrix
equation [

a b
c d

]
·
[
a c
b d

]
=

[
1 0
0 1

]
,

or, equivalently, the following three conditions:

a2 + b2 = 1

c2 + d2 = 1

ac+ bd = 0

The first two conditions imply that (a, b) and (c, d) both lie on the unit circle; the third condition
requires (a, b) and (c, d) to be orthogonal as vectors (see Figure 2). This leaves two possibilities:
(c, d) = (−b, a) or (c, d) = (b,−a). Since (a, b) lies on the unit circle, we can also parametrize (a, b)
as (a, b) = (cos θ, sin θ), finally obtaining that all orthogonal 2× 2 matrices are of the form[

cos θ sin θ
− sin θ cos θ

]
or

[
cos θ sin θ
sin θ − cos θ

]
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Figure 2: The coefficients of an orthogonal matrix

for some θ ∈ [0, 2π). Note that det

([
cos θ sin θ
− sin θ cos θ

])
= 1, while det

([
cos θ sin θ
sin θ − cos θ

])
= −1.

Writing the vector [
x′

y′

]
=

[
cos θ sin θ
− sin θ cos θ

]
·
[
x
y

]
as a complex number, we obtain

x′ + iy′ = (x cos θ + y sin θ) + i(−x sin θ + y cos θ)

= x(cos θ − i sin θ) + iy(cos θ − i sin θ)

= (x+ iy)e−iθ.

Consequently the orthogonal matrix

[
cos θ sin θ
− sin θ cos θ

]
corresponds to the Type I isometry f : C→ C,

given by
f(z) = ze−iθ,

and thus rotates a vector clockwise about the origin by the angle θ.
A similar computation for [

x′

y′

]
=

[
cos θ sin θ
sin θ − cos θ

]
·
[
x
y

]
yields

x′ + iy′ = (x cos θ + y sin θ) + i(x sin θ − y cos θ)

= x(cos θ + i sin θ)− iy(cos θ + i sin θ)

= (x− iy)eiθ.

Thus the orthogonal matrix

[
cos θ sin θ
sin θ − cos θ

]
corresponds to the Type II isometry f : C→ C, given

by
f(z) = zeiθ.
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