CRN 13593: Weeks

From Classes
(Difference between revisions)
Jump to: navigation, search
(Week 5)
Line 1: Line 1:
 
__NOTOC__
 
__NOTOC__
 +
===Week 6===
 +
* A new project has been posted. Deadline is October 16. Watch the next video for help on some ''Mathematica'' commands.
 +
*14. Some advanced ''Mathematica'' commands (18 min.):
 +
<html><iframe width="280" height="160" src="https://utep.yuja.com/V/Video?v=1904225&node=7297670&a=1779775246&preload=false" frameborder="0" webkitallowfullscreen mozallowfullscreen allowfullscreen></iframe></html>
 +
*15. Traditional Fourier Analysis (20 min.):
 +
<html><iframe width="280" height="160" src="https://utep.yuja.com/V/Video?v=1905284&node=7301467&a=1133615839&preload=false" frameborder="0" webkitallowfullscreen mozallowfullscreen allowfullscreen></iframe></html>
 +
*16. An example (8 min.):
 +
<html><iframe width="280" height="160" src="https://utep.yuja.com/V/Video?v=1905756&node=7313438&a=389996629&preload=false" frameborder="0" webkitallowfullscreen mozallowfullscreen allowfullscreen></iframe></html>
 +
*Your first test will be on Thursday, October 8. I will email the test to you at 17:00; you will need to return it to me via email in PDF format by 18:30. You are allowed to use a hand-held calculator and writing utensils only. The test will cover the material up to this point, including the homework I assigned today:
 +
*#Show that <math>\int_{-\pi}^\pi  \sin(kt) \cos(nt)\, dt=0</math> for all values of k and n.
 +
*#Compute <math>\int_{-\pi}^\pi  \cos(kt) \cos(nt)\, dt</math> for all values of k and n.
 +
*# (a) Compute <math>\|\sin(t)\|_2</math>. (b) Can you find c such that <math>\|c\sin(kt)\|_2=1</math> or all k?
 +
*#Compute the Fourier coefficients of <math>f(t)=|t|</math>
 +
*# Can every function <math>f:\mathbb{R}\to\mathbb{R}</math> be written as the sum of an odd function and an even function?
 +
 
===Week 5===
 
===Week 5===
 
*[http://helmut.knaust.info/class/201810_5311/ShETh.pdf Towards Shannon's Entropy Theorem]  
 
*[http://helmut.knaust.info/class/201810_5311/ShETh.pdf Towards Shannon's Entropy Theorem]  
 
*13. Shannon's Entropy Theorem (13 min.):
 
*13. Shannon's Entropy Theorem (13 min.):
 
<html><iframe width="280" height="160" src="https://utep.yuja.com/V/Video?v=1873658&node=7140378&a=1924128691&preload=false" frameborder="0" webkitallowfullscreen mozallowfullscreen allowfullscreen></iframe></html>
 
<html><iframe width="280" height="160" src="https://utep.yuja.com/V/Video?v=1873658&node=7140378&a=1924128691&preload=false" frameborder="0" webkitallowfullscreen mozallowfullscreen allowfullscreen></iframe></html>
 +
 
===Week 4===
 
===Week 4===
 
* Read pp. 91-96, 106-120
 
* Read pp. 91-96, 106-120

Revision as of 12:24, 6 October 2020

Week 6

  • A new project has been posted. Deadline is October 16. Watch the next video for help on some Mathematica commands.
  • 14. Some advanced Mathematica commands (18 min.):

  • 15. Traditional Fourier Analysis (20 min.):

  • 16. An example (8 min.):

  • Your first test will be on Thursday, October 8. I will email the test to you at 17:00; you will need to return it to me via email in PDF format by 18:30. You are allowed to use a hand-held calculator and writing utensils only. The test will cover the material up to this point, including the homework I assigned today:
    1. Show that \(\int_{-\pi}^\pi \sin(kt) \cos(nt)\, dt=0\) for all values of k and n.
    2. Compute \(\int_{-\pi}^\pi \cos(kt) \cos(nt)\, dt\) for all values of k and n.
    3. (a) Compute \(\|\sin(t)\|_2\). (b) Can you find c such that \(\|c\sin(kt)\|_2=1\) or all k?
    4. Compute the Fourier coefficients of \(f(t)=|t|\)
    5. Can every function \(f:\mathbb{R}\to\mathbb{R}\) be written as the sum of an odd function and an even function?

Week 5

Week 4

  • Read pp. 91-96, 106-120
  • Homework: p.106: 3.26ab; p.113: 3.27, 3.28, 3.29, 3.30, 3.33
  • 9. Color Images (16 min.):

  • 10. Huffman Encoding (17 min.):

  • 11. Huffman Encoding II (6 min.):

  • 12. Quantitative and Qualitative Measures (12 min.):

Week 3

  • Project 2 has been posted.
  • 8. Creating Large Matrices with the SparseArray Command (13 min.):

  • Project 1 is due on Friday, September 11: Project 1. Please email the project to me at hknaust@utep.edu. Name the notebook "<your last name> 1.nb", e.g. "Smith 1.nb".

Week 2

  • Read pp.69-85
  • Photo set
  • 5. Loading Photos into Mathematica (14 min.):

  • 6. Introduction to Digital Images I: (14 min.)

  • 7. Introduction to Digital Images II: (16 min.)

Week 1

  • 1. Course Overview and Syllabus (28 min.):

  • Read pp.15-40 (skip Example 2.9)
  • 2. Section 2.1 (9 min.):

  • 3. Section 2.2 (18 min.):

Personal tools
Namespaces

Variants
Actions
Navigation
Toolbox