DWT-References

From Classes
(Difference between revisions)
Jump to: navigation, search
Line 32: Line 32:
  
 
* Mathematica
 
* Mathematica
** Paul R. Wellin. ''Programming with Mathematica: An Introduction''. Springer-Verlag (2013).
 
 
** Roozbeh Hazrat. ''Mathematica: A Problem-Centered Approach'', Springer-Verlag (2010).
 
** Roozbeh Hazrat. ''Mathematica: A Problem-Centered Approach'', Springer-Verlag (2010).
 
** Roman Maeder. ''Programming in Mathematica'', Addison-Wesley, 2nd ed. (1991).
 
** Roman Maeder. ''Programming in Mathematica'', Addison-Wesley, 2nd ed. (1991).
 +
** Sal Mangano. ''Mathematica Cookbook'', O'Reilly (2010).
 +
** Paul R. Wellin. ''Programming with Mathematica: An Introduction''. Springer-Verlag (2013).
  
 
* Linear Algebra and Geometry
 
* Linear Algebra and Geometry
 
** Thomas Banchoff & John Wermer. ''Linear Algebra Through Geometry''. Springer-Verlag, 2nd ed. (1992).
 
** Thomas Banchoff & John Wermer. ''Linear Algebra Through Geometry''. Springer-Verlag, 2nd ed. (1992).

Revision as of 13:11, 6 October 2020

  • Discrete Wavelet Transforms
    • Albert Boggess & Francis J. Narcowich. A First Course in Wavelets with Fourier Analysis. Prentice-Hall (2001).
    • Ingrid Daubechies. Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics (1992).
    • Michael W. Frazier. An Introduction to Wavelets Through Linear Algebra. Springer-Verlag (2001).
    • Barbara Burke Hubbard. The World According to Wavelets. AK Peters, 2nd ed. (1998)
    • Arne Jensen & Anders la Cour-Harbo. Ripples in Mathematics: The Discrete Wavelet Transform. Springer-Verlag (2001).
    • Stéphane Mallat. A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way. Academic Press (2008).
    • Yves Meyer. Ondelettes et opérateurs. Hermann (1990).
    • Martin J. Mohlenkamp & María Cristina Pereyra. Wavelets, Their Friends, and What They Can Do for You. European Mathematical Society (2000).
    • David K. Ruch & Patrick J. Van Fleet. Wavelet Theory: An Elementary Approach with Applications. Wiley (2010).
    • Gilbert Strang. Wavelets and Dilation Equations: A Brief Introduction. SIAM Review, Vol. 31, No. 4. (1989), pp. 614-627.
    • Gilbert Strang & Truong Nguyen. Wavelets and Filter Banks. Wellesley College, 2nd ed. (1996).
    • Patrick Van Fleet. Discrete Wavelet Transformations: An Elementary Approach with Applications. Wiley (2008).
    • David F. Walnut. An Introduction to Wavelet Analysis. Birkhäuser (2004).
    • Filip Wasilewski. Wavelet Properties Browser.
  • Fourier Analysis
    • M.A. Al-Gwaiz. Sturm-Liouville Theory and its Applications. Springer-Verlag (2008).
    • Rajendra Bhatia. Fourier Series. Mathematical Association of America (2004).
    • Anton Deitmar. A First Course in Harmonic Analysis. Springer-Verlag, 2nd ed. (2005).
    • Thomas W. Körner. Fourier Analysis. Cambridge University Press (1988).
    • Kenneth A. Ross. A Trip from Classical to Abstract Fourier Analysis. Notices of the AMS 61 (2014), pp. 1032-1038.
  • Digital Image Processing
    • Rafael C. Gonzalez & Richard E. Woods. Digital Image Processing. Pearson, 3rd ed. (2008).
  • Mathematica
    • Roozbeh Hazrat. Mathematica: A Problem-Centered Approach, Springer-Verlag (2010).
    • Roman Maeder. Programming in Mathematica, Addison-Wesley, 2nd ed. (1991).
    • Sal Mangano. Mathematica Cookbook, O'Reilly (2010).
    • Paul R. Wellin. Programming with Mathematica: An Introduction. Springer-Verlag (2013).
  • Linear Algebra and Geometry
    • Thomas Banchoff & John Wermer. Linear Algebra Through Geometry. Springer-Verlag, 2nd ed. (1992).
Personal tools
Namespaces

Variants
Actions
Navigation
Toolbox