CRN 13593: Weeks

From Classes
(Difference between revisions)
Jump to: navigation, search
(Week 13)
 
(10 intermediate revisions by one user not shown)
Line 1: Line 1:
 +
__NOTOC__
 +
===Week 13===
 +
*29. Final Projects (9 min.)
 +
<html><iframe width="280" height="160" src="https://utep.yuja.com/V/Video?v=2207590&node=8118952&a=1421558749&preload=false" frameborder="0" webkitallowfullscreen mozallowfullscreen allowfullscreen></iframe></html>
 +
 +
===Week 12===
 +
*26. Computing Project 4 (10 min.)
 +
<html><iframe width="280" height="160" src="https://utep.yuja.com/V/Video?v=2177880&node=8062586&a=811529897&preload=false" frameborder="0" webkitallowfullscreen mozallowfullscreen allowfullscreen></iframe></html>
 +
*27. Filters and towards D4 (27 min.)
 +
<html><iframe width="280" height="160" src="https://utep.yuja.com/V/Video?v=2190034&node=8086669&a=208155364&preload=false" frameborder="0" webkitallowfullscreen mozallowfullscreen allowfullscreen></iframe></html>
 +
*28. Computing the Daubechies-4 coefficients (6 min.)
 +
<html><iframe width="280" height="160" src="https://utep.yuja.com/V/Video?v=2190742&node=8087975&a=604347732&preload=false" frameborder="0" webkitallowfullscreen mozallowfullscreen allowfullscreen></iframe></html>
 +
<br>
 +
[http://helmut.knaust.info/class/201610_5311/D4.pdf Computing the Daubechies-4 Coefficients "power point"]
 +
 +
===Week 11===
 +
* Reading for this week: The two videos below cover most of Chapter 4. Watch the videos, and then leaf through Chapter 4. The author presents different ways to go about this. I did not address edge detection via the Haar wavelet.
 +
*24. Haar 1D (20 min.)
 +
<html><iframe width="280" height="160" src="https://utep.yuja.com/V/Video?v=2148016&node=8003288&a=716114362&preload=false" frameborder="0" webkitallowfullscreen mozallowfullscreen allowfullscreen></iframe></html>
 +
*25. Haar 2D (21 min.)
 +
<html><iframe width="280" height="160" src="https://utep.yuja.com/V/Video?v=2151147&node=8010482&a=328367722&preload=false" frameborder="0" webkitallowfullscreen mozallowfullscreen allowfullscreen></iframe></html>
 +
 +
===Week 10===
 +
*[http://helmut.knaust.info/class/202110_5311/ASPIRE.pdf Aspire Webinar] on October 30.
 +
*Read [http://helmut.knaust.info/class/201810_5311/MRA/MRA.pdf  Multi-Resolution Analysis for the Haar Wavelet].
 +
*22. Haar Wavelets I (29 min.)
 +
<html><iframe width="280" height="160" src="https://utep.yuja.com/V/Video?v=2094811&node=7864484&a=1564946721&preload=false" frameborder="0" webkitallowfullscreen mozallowfullscreen allowfullscreen></iframe></html>
 +
*23. Haar Wavelets II (29 min.)
 +
<html><iframe width="280" height="160" src="https://utep.yuja.com/V/Video?v=2094651&node=7864142&a=769729752&preload=false" frameborder="0" webkitallowfullscreen mozallowfullscreen allowfullscreen></iframe></html>
 +
 +
===Week 9===
 +
*20. Fourier Analysis II (22 min.)
 +
<html><iframe width="280" height="160" src="https://utep.yuja.com/V/Video?v=2041782&node=7748182&a=501777428&preload=false" frameborder="0" webkitallowfullscreen mozallowfullscreen allowfullscreen></iframe></html>
 +
*21. Fourier Analysis III (9 min.)
 +
<html><iframe width="280" height="160" src="https://utep.yuja.com/V/Video?v=2041907&node=7748525&a=135271214&preload=false" frameborder="0" webkitallowfullscreen mozallowfullscreen allowfullscreen></iframe></html>
 +
*Start reading [http://helmut.knaust.info/class/201810_5311/MRA/MRA.pdf  Multi-Resolution Analysis for the Haar Wavelet].
 +
 +
===Week 8===
 +
* Read pp.334-344.
 +
* 19. Fourier Analysis I (15 min.) [Disclaimer: There are a few "typos" - sorry!]
 +
<html><iframe width="280" height="160" src="https://utep.yuja.com/V/Video?v=2017307&node=7694291&a=1741723032&preload=false" frameborder="0" webkitallowfullscreen mozallowfullscreen allowfullscreen></iframe></html>
 +
 +
===Week 7===
 +
*Your first test will be on Thursday, October 8. I will email the test to you at 17:00; you will need to return it to me via email in PDF format by 18:30. You are allowed to use a hand-held calculator and writing utensils only. The test will cover the material up to Video 16, including the "traditional Fourier series" homework I assigned last week.
 +
* Read pp.322-334.
 +
* 17. Complex numbers (23 min.):
 +
<html><iframe width="280" height="160" src="https://utep.yuja.com/V/Video?v=1956714&node=7539480&a=533469134&preload=false" frameborder="0" webkitallowfullscreen mozallowfullscreen allowfullscreen></iframe></html>
 +
*18. The complex exponential function (21 min.):
 +
<html><iframe width="280" height="160" src="https://utep.yuja.com/V/Video?v=1958184&node=7544306&a=1949008148&preload=false" frameborder="0" webkitallowfullscreen mozallowfullscreen allowfullscreen></iframe></html>
 +
 +
===Week 6===
 +
* A new project has been posted. Deadline is October 16. Watch the next video for help on some ''Mathematica'' commands.
 +
*14. Some advanced ''Mathematica'' commands (18 min.):
 +
<html><iframe width="280" height="160" src="https://utep.yuja.com/V/Video?v=1904225&node=7297670&a=1779775246&preload=false" frameborder="0" webkitallowfullscreen mozallowfullscreen allowfullscreen></iframe></html>
 +
*15. Traditional Fourier Analysis (20 min.):
 +
<html><iframe width="280" height="160" src="https://utep.yuja.com/V/Video?v=1905284&node=7301467&a=1133615839&preload=false" frameborder="0" webkitallowfullscreen mozallowfullscreen allowfullscreen></iframe></html>
 +
*16. An example (8 min.):
 +
<html><iframe width="280" height="160" src="https://utep.yuja.com/V/Video?v=1905756&node=7313438&a=389996629&preload=false" frameborder="0" webkitallowfullscreen mozallowfullscreen allowfullscreen></iframe></html>
 +
*Your first test will be on Thursday, October 8. I will email the test to you at 17:00; you will need to return it to me via email in PDF format by 18:30. You are allowed to use a hand-held calculator and writing utensils only. The test will cover the material up to this point, including the homework I assigned today:
 +
*#Show that <math>\int_{-\pi}^\pi  \sin(kt) \cos(nt)\, dt=0</math> for all values of k and n.
 +
*#Compute <math>\int_{-\pi}^\pi  \cos(kt) \cos(nt)\, dt</math> for all values of k and n.
 +
*# (a) Compute <math>\|\sin(t)\|_2</math>. (b) Can you find c such that <math>\|c\sin(kt)\|_2=1</math> or all k?
 +
*#Compute the Fourier coefficients of <math>f(t)=|t|</math>
 +
*# Can every function <math>f:\mathbb{R}\to\mathbb{R}</math> be written as the sum of an odd function and an even function?
 +
 
===Week 5===
 
===Week 5===
 
*[http://helmut.knaust.info/class/201810_5311/ShETh.pdf Towards Shannon's Entropy Theorem]  
 
*[http://helmut.knaust.info/class/201810_5311/ShETh.pdf Towards Shannon's Entropy Theorem]  
 
*13. Shannon's Entropy Theorem (13 min.):
 
*13. Shannon's Entropy Theorem (13 min.):
 
<html><iframe width="280" height="160" src="https://utep.yuja.com/V/Video?v=1873658&node=7140378&a=1924128691&preload=false" frameborder="0" webkitallowfullscreen mozallowfullscreen allowfullscreen></iframe></html>
 
<html><iframe width="280" height="160" src="https://utep.yuja.com/V/Video?v=1873658&node=7140378&a=1924128691&preload=false" frameborder="0" webkitallowfullscreen mozallowfullscreen allowfullscreen></iframe></html>
 +
 
===Week 4===
 
===Week 4===
 
* Read pp. 91-96, 106-120
 
* Read pp. 91-96, 106-120

Latest revision as of 21:10, 7 December 2020

[edit] Week 13

  • 29. Final Projects (9 min.)

[edit] Week 12

  • 26. Computing Project 4 (10 min.)

  • 27. Filters and towards D4 (27 min.)

  • 28. Computing the Daubechies-4 coefficients (6 min.)


Computing the Daubechies-4 Coefficients "power point"

[edit] Week 11

  • Reading for this week: The two videos below cover most of Chapter 4. Watch the videos, and then leaf through Chapter 4. The author presents different ways to go about this. I did not address edge detection via the Haar wavelet.
  • 24. Haar 1D (20 min.)

  • 25. Haar 2D (21 min.)

[edit] Week 10

  • 23. Haar Wavelets II (29 min.)

[edit] Week 9

  • 20. Fourier Analysis II (22 min.)

  • 21. Fourier Analysis III (9 min.)

[edit] Week 8

  • Read pp.334-344.
  • 19. Fourier Analysis I (15 min.) [Disclaimer: There are a few "typos" - sorry!]

[edit] Week 7

  • Your first test will be on Thursday, October 8. I will email the test to you at 17:00; you will need to return it to me via email in PDF format by 18:30. You are allowed to use a hand-held calculator and writing utensils only. The test will cover the material up to Video 16, including the "traditional Fourier series" homework I assigned last week.
  • Read pp.322-334.
  • 17. Complex numbers (23 min.):

  • 18. The complex exponential function (21 min.):

[edit] Week 6

  • A new project has been posted. Deadline is October 16. Watch the next video for help on some Mathematica commands.
  • 14. Some advanced Mathematica commands (18 min.):

  • 15. Traditional Fourier Analysis (20 min.):

  • 16. An example (8 min.):

  • Your first test will be on Thursday, October 8. I will email the test to you at 17:00; you will need to return it to me via email in PDF format by 18:30. You are allowed to use a hand-held calculator and writing utensils only. The test will cover the material up to this point, including the homework I assigned today:
    1. Show that \(\int_{-\pi}^\pi \sin(kt) \cos(nt)\, dt=0\) for all values of k and n.
    2. Compute \(\int_{-\pi}^\pi \cos(kt) \cos(nt)\, dt\) for all values of k and n.
    3. (a) Compute \(\|\sin(t)\|_2\). (b) Can you find c such that \(\|c\sin(kt)\|_2=1\) or all k?
    4. Compute the Fourier coefficients of \(f(t)=|t|\)
    5. Can every function \(f:\mathbb{R}\to\mathbb{R}\) be written as the sum of an odd function and an even function?

[edit] Week 5

[edit] Week 4

  • Read pp. 91-96, 106-120
  • Homework: p.106: 3.26ab; p.113: 3.27, 3.28, 3.29, 3.30, 3.33
  • 9. Color Images (16 min.):

  • 10. Huffman Encoding (17 min.):

  • 11. Huffman Encoding II (6 min.):

  • 12. Quantitative and Qualitative Measures (12 min.):

[edit] Week 3

  • Project 2 has been posted.
  • 8. Creating Large Matrices with the SparseArray Command (13 min.):

  • Project 1 is due on Friday, September 11: Project 1. Please email the project to me at hknaust@utep.edu. Name the notebook "<your last name> 1.nb", e.g. "Smith 1.nb".

[edit] Week 2

  • Read pp.69-85
  • Photo set
  • 5. Loading Photos into Mathematica (14 min.):

  • 6. Introduction to Digital Images I: (14 min.)

  • 7. Introduction to Digital Images II: (16 min.)

[edit] Week 1

  • 1. Course Overview and Syllabus (28 min.):

  • Read pp.15-40 (skip Example 2.9)
  • 2. Section 2.1 (9 min.):

  • 3. Section 2.2 (18 min.):

Personal tools
Namespaces

Variants
Actions
Navigation
Toolbox