CRN 12107: HW 5

From Classes
(Difference between revisions)
Jump to: navigation, search
(Created page with "'''Problem 21.''' Let $R$ and $S$ be two relations on $\mathbb{R}$: $R=\{(x,y)\in\mathbb{R}\times\mathbb{R}\ |\ y<x^2\}$ and $S=\{(x,y)\in\mathbb{R}\times\mathbb{R}\ |\ y=2x-...")
 
 
Line 7: Line 7:
 
'''Problem 23.''' Let $R$ be a relation from $A$ to $B$. For an element $b\in B$ define the set $R_b:=\{a\in A\ |\ (a,b)\in R\}$. Show \[\bigcup_{b\in B} R_b=\mbox{Dom}\, R.\]
 
'''Problem 23.''' Let $R$ be a relation from $A$ to $B$. For an element $b\in B$ define the set $R_b:=\{a\in A\ |\ (a,b)\in R\}$. Show \[\bigcup_{b\in B} R_b=\mbox{Dom}\, R.\]
  
'''Problem 24.''' Define a relation $R$ on $\mathbb{R}$ as follows: $a\,R\,b$ if $a-b$ is irrational. Prove or disprove: $R$ is (a) reflexive, (b) symmetric, (c) transitive.  
+
'''Problem 24.''' Define a relation $S$ on $\mathbb{R}$ as follows: $a\,S\,b$ if $a-b$ is irrational. Prove or disprove: $S$ is (a) reflexive, (b) symmetric, (c) transitive.  
  
 
'''Problem 25.''' Exercise 3.2 #13.
 
'''Problem 25.''' Exercise 3.2 #13.

Latest revision as of 11:29, 23 October 2013

Problem 21. Let $R$ and $S$ be two relations on $\mathbb{R}$: $R=\{(x,y)\in\mathbb{R}\times\mathbb{R}\ |\ y<x^2\}$ and $S=\{(x,y)\in\mathbb{R}\times\mathbb{R}\ |\ y=2x-1\}$. Find $S\circ R$ and $R\circ S$.

Problem 22. Let $R$ be a relation from the set $A$ to the set $B$, and $S$ be a relation from the set $B$ to the set $C$.

  1. Prove or disprove: Dom$(S\circ R)\subseteq$ Dom$(R)$.
  2. Prove or disprove: Rng$(S\circ R)\subseteq$ Rng$(S)$.

Problem 23. Let $R$ be a relation from $A$ to $B$. For an element $b\in B$ define the set $R_b:=\{a\in A\ |\ (a,b)\in R\}$. Show \[\bigcup_{b\in B} R_b=\mbox{Dom}\, R.\]

Problem 24. Define a relation $S$ on $\mathbb{R}$ as follows: $a\,S\,b$ if $a-b$ is irrational. Prove or disprove: $S$ is (a) reflexive, (b) symmetric, (c) transitive.

Problem 25. Exercise 3.2 #13.

Personal tools
Namespaces

Variants
Actions
Navigation
Toolbox