Processing math: 100%

CRN 11982: HW 5

From Classes
(Difference between revisions)
Jump to: navigation, search
(Created page with " '''Problem 21.''' Exercise 3.2.2 (a-c) '''Problem 22.''' Given a set X of real numbers, let L be the set of all limit points of X. Show that L is closed. '''Probl...")
 
 
Line 13: Line 13:
  
 
'''Problem 25.''' Find all limit points of the set  
 
'''Problem 25.''' Find all limit points of the set  
\[\left\{\frac{1}{m}+\frac{1}{n}\ |\ m,n\in\mathbb{N}\right\}\]
+
\[\left\{\frac{1}{m}+\frac{1}{n}\ :\ m,n\in\mathbb{N}\right\}\]
 
Remember that A=B  (AB)(BA).
 
Remember that A=B  (AB)(BA).

Latest revision as of 09:15, 15 October 2014

Problem 21. Exercise 3.2.2 (a-c)


Problem 22. Given a set X of real numbers, let L be the set of all limit points of X. Show that L is closed.


Problem 23. Show: If X is both open and closed, then X=R or X=.


Problem 24. Exercise 3.2.9 (a)


Problem 25. Find all limit points of the set {1m+1n : m,nN}

Remember that A=B  (AB)(BA).

Personal tools
Namespaces

Variants
Actions
Navigation
Toolbox