CRN 11378: HW 4
HelmutKnaust (Talk | contribs) |
HelmutKnaust (Talk | contribs) |
||
(2 intermediate revisions by one user not shown) | |||
Line 1: | Line 1: | ||
− | '''Problem | + | '''Problem 16.''' |
− | + | # Show: If $x$ is an accumulation point of $A\cup B$, then $x$ is an accumulation point of $A$, or $x$ is an accumulation point of $B$ (or both). | |
+ | # Does the result also hold for a countably infinite collection of sets? Give a proof, or provide a counterexample. | ||
− | '''Problem | + | '''Problem 17.''' Prove: A subset $F\subseteq \mathbb{R}$ is closed if and only if every Cauchy sequence contained in $F$ converges to an element in $F$. |
− | + | ||
− | '''Problem | + | '''Problem 18.''' Find all accumulation points of the set |
− | + | \[\left\{\frac{1}{m}+\frac{1}{n}\ |\ m,n\in\mathbb{N}\right\}\] | |
+ | Remember that $A=B\ \Leftrightarrow\ (A\subseteq B)\wedge (B\subseteq A)$. | ||
− | '''Problem | + | '''Problem 19.''' Show: If $X\subseteq \mathbb{R}$ is both open and closed, then $X=\mathbb{R}$ or $X=\emptyset$. |
− | + | ||
− | + | '''Problem 20.''' Consider the following sets: | |
− | + | \[A=\left\{1,\frac{1}{2},\frac{1}{3},\frac{1}{4}\ldots\right\},\quad B=\left\{1,\frac{1}{2},\frac{2}{3},\frac{3}{4},\frac{4}{5}\ldots\right\}, \quad C=\mathbb{Q}\cap[0,1]\] | |
+ | For the sets that are compact, explain why. For the other ones, show that they have an open cover without finite subcover. |
Latest revision as of 12:14, 12 November 2019
Problem 16.
- Show: If $x$ is an accumulation point of $A\cup B$, then $x$ is an accumulation point of $A$, or $x$ is an accumulation point of $B$ (or both).
- Does the result also hold for a countably infinite collection of sets? Give a proof, or provide a counterexample.
Problem 17. Prove: A subset $F\subseteq \mathbb{R}$ is closed if and only if every Cauchy sequence contained in $F$ converges to an element in $F$.
Problem 18. Find all accumulation points of the set \[\left\{\frac{1}{m}+\frac{1}{n}\ |\ m,n\in\mathbb{N}\right\}\] Remember that $A=B\ \Leftrightarrow\ (A\subseteq B)\wedge (B\subseteq A)$.
Problem 19. Show: If $X\subseteq \mathbb{R}$ is both open and closed, then $X=\mathbb{R}$ or $X=\emptyset$.
Problem 20. Consider the following sets: \[A=\left\{1,\frac{1}{2},\frac{1}{3},\frac{1}{4}\ldots\right\},\quad B=\left\{1,\frac{1}{2},\frac{2}{3},\frac{3}{4},\frac{4}{5}\ldots\right\}, \quad C=\mathbb{Q}\cap[0,1]\] For the sets that are compact, explain why. For the other ones, show that they have an open cover without finite subcover.