CRN 10459: HW 6

From Classes
(Difference between revisions)
Jump to: navigation, search
 
(2 intermediate revisions by one user not shown)
Line 2: Line 2:
 
Let $f,g:\mathbb{R}\to\mathbb{R}$ be two continuous functions. Define $h(x)=\max\{f(x),g(x)\}$ for all $x\in\mathbb{R}$. Show that $h$ is continuous on $\mathbb{R}$.
 
Let $f,g:\mathbb{R}\to\mathbb{R}$ be two continuous functions. Define $h(x)=\max\{f(x),g(x)\}$ for all $x\in\mathbb{R}$. Show that $h$ is continuous on $\mathbb{R}$.
  
'''Problem 27.''' Let $c\geq 0$. Assume $f:\mathbb{R}\to\mathbb{R}$ satisfies $|f(x)-f(y)|\leq c\cdot |x-y|$ for all $x,y\in\mathbb{R}$.
+
'''Problem 27.''' Let $c\geq 0$. Assume $f:\mathbb{R}\to\mathbb{R}$ satisfies $|f(x)-f(y)|\leq c\cdot |x-y|$ for all $x,y\in\mathbb{R}$. Note that such a function is uniformly continuous on $\mathbb{R}$.
#Show that $f$ is uniformly continuous on $\mathbb{R}$.
+
#Assume that $0<c<1$. Show that there is an $x\in\mathbb{R}$ such that $f(x)=x$. (Hint: for any $y\in\mathbb{R}$ look at the sequence $y,f(y),f(f(y)),f(f(f(y))),\ldots$.
#Now assume that $0<c<1$. Show that there is an $x\in\mathbb{R}$ such that $f(x)=x$. (Hint: for any $y\in\mathbb{R}$ look at the sequence $y,f(y),f(f(y)),f(f(f(y))),\ldots$.
+
 
#Show that the result in 2. above may fail if $c=1$.
 
#Show that the result in 2. above may fail if $c=1$.
  
Line 13: Line 12:
 
'''Problem 29.'''  
 
'''Problem 29.'''  
 
Let $f:\mathbb{R}\to\mathbb{R}$ be continuous on $\mathbb{R}$, and assume that for all $\varepsilon>0$ there is an $N>0$ such that $|f(x)|<\varepsilon$ for all $x$ satisfying $|x|>N$. Show that $f$ is uniformly continuous on $\mathbb{R}$.
 
Let $f:\mathbb{R}\to\mathbb{R}$ be continuous on $\mathbb{R}$, and assume that for all $\varepsilon>0$ there is an $N>0$ such that $|f(x)|<\varepsilon$ for all $x$ satisfying $|x|>N$. Show that $f$ is uniformly continuous on $\mathbb{R}$.
 
  
 
'''Problem 30.''' Let the function $f:[a,b]\to\mathbb{R}$ be continuous on $[a,b]$ and let $F=\{x\in [a,b]\ |\mbox{ there is a } y\neq x\in [a,b] \mbox{ with } f(x)=f(y)\}$. Show that $F$ is empty or uncountable. (Ex. 4.5.4.)
 
'''Problem 30.''' Let the function $f:[a,b]\to\mathbb{R}$ be continuous on $[a,b]$ and let $F=\{x\in [a,b]\ |\mbox{ there is a } y\neq x\in [a,b] \mbox{ with } f(x)=f(y)\}$. Show that $F$ is empty or uncountable. (Ex. 4.5.4.)

Latest revision as of 13:21, 11 November 2025

Problem 26. Let $f,g:\mathbb{R}\to\mathbb{R}$ be two continuous functions. Define $h(x)=\max\{f(x),g(x)\}$ for all $x\in\mathbb{R}$. Show that $h$ is continuous on $\mathbb{R}$.

Problem 27. Let $c\geq 0$. Assume $f:\mathbb{R}\to\mathbb{R}$ satisfies $|f(x)-f(y)|\leq c\cdot |x-y|$ for all $x,y\in\mathbb{R}$. Note that such a function is uniformly continuous on $\mathbb{R}$.

  1. Assume that $0<c<1$. Show that there is an $x\in\mathbb{R}$ such that $f(x)=x$. (Hint: for any $y\in\mathbb{R}$ look at the sequence $y,f(y),f(f(y)),f(f(f(y))),\ldots$.
  2. Show that the result in 2. above may fail if $c=1$.

Problem 28. Let $D\subseteq\mathbb{R}$. A function $f:D \to \mathbb{R}$ is called bounded if there is an $M>0$ such that $|f(x)|\leq M$ for all $x\in D$.

  1. Let $f,g:\mathbb{R}\to\mathbb{R}$ be two bounded functions that are uniformly continuous on $\mathbb{R}$. Show that $f\cdot g$ is uniformly continuous on $\mathbb{R}$.
  2. Show that the result may fail without the boundedness condition.

Problem 29. Let $f:\mathbb{R}\to\mathbb{R}$ be continuous on $\mathbb{R}$, and assume that for all $\varepsilon>0$ there is an $N>0$ such that $|f(x)|<\varepsilon$ for all $x$ satisfying $|x|>N$. Show that $f$ is uniformly continuous on $\mathbb{R}$.

Problem 30. Let the function $f:[a,b]\to\mathbb{R}$ be continuous on $[a,b]$ and let $F=\{x\in [a,b]\ |\mbox{ there is a } y\neq x\in [a,b] \mbox{ with } f(x)=f(y)\}$. Show that $F$ is empty or uncountable. (Ex. 4.5.4.)

Personal tools
Namespaces

Variants
Actions
Navigation
Toolbox