Assignments
From Classes
(Difference between revisions)
HelmutKnaust (Talk | contribs) |
HelmutKnaust (Talk | contribs) |
||
Line 1: | Line 1: | ||
# Let <math>A=\begin{pmatrix}1&2&3\\4&5&6\\7&8&10\end{pmatrix}</math>. Find a matrix X such that <math>X\cdot A=\begin{pmatrix}7&8&10\\4&5&6\\1&2&3\end{pmatrix}</math>. What do you get if you compute <math>A\cdot X</math>? | # Let <math>A=\begin{pmatrix}1&2&3\\4&5&6\\7&8&10\end{pmatrix}</math>. Find a matrix X such that <math>X\cdot A=\begin{pmatrix}7&8&10\\4&5&6\\1&2&3\end{pmatrix}</math>. What do you get if you compute <math>A\cdot X</math>? | ||
− | # Find a 4x4 orthogonal matrix with at least | + | # Find a 4x4 orthogonal matrix with at least 5 non-zero entries. |
− | # Can you find a 3x3 orthogonal matrix with no zeroes? | + | # Can you find a 3x3 orthogonal matrix with no zeroes? [http://helmut.knaust.info/class/201310_5311/Notebooks/Assignment03.nb Notebook] |
Revision as of 21:27, 10 June 2013
- Let \(A=\begin{pmatrix}1&2&3\\4&5&6\\7&8&10\end{pmatrix}\). Find a matrix X such that \(X\cdot A=\begin{pmatrix}7&8&10\\4&5&6\\1&2&3\end{pmatrix}\). What do you get if you compute \(A\cdot X\)?
- Find a 4x4 orthogonal matrix with at least 5 non-zero entries.
- Can you find a 3x3 orthogonal matrix with no zeroes? Notebook