DWT-References

From Classes
(Difference between revisions)
Jump to: navigation, search
(Created page with "* Discrete Wavelet Transforms ** Albert Boggess & Francis J. Narcowich. ''A First Course in Wavelets with Fourier Analysis.'' Prentice-Hall (2001). ** Ingrid Daubechies. ''Ten...")
 
Line 25: Line 25:
 
* Information Theory
 
* Information Theory
 
** David A. Huffman. [http://compression.ru/download/articles/huff/huffman_1952_minimum-redundancy-codes.pdf  ''A Method for the Construction of Minimum-Redundancy Codes.''] Proceedings of the I.R.E., September 1952, pp. 1098–1101.
 
** David A. Huffman. [http://compression.ru/download/articles/huff/huffman_1952_minimum-redundancy-codes.pdf  ''A Method for the Construction of Minimum-Redundancy Codes.''] Proceedings of the I.R.E., September 1952, pp. 1098–1101.
** Paul Penfield. [http://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-050JSpring-2008/12EC0174-5AE7-449C-B723-17916C71570E/0/penfield.pdf ''Information and Entropy.'']
+
** Paul Penfield. [http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-050j-information-and-entropy-spring-2008/ Entropy Course Materials]
 
** Claude E. Shannon. [http://plan9.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf ''A Mathematical Theory of Communication.''] Bell System Technical Journal 27 (1948), pp. 379-423, pp. 623-656.
 
** Claude E. Shannon. [http://plan9.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf ''A Mathematical Theory of Communication.''] Bell System Technical Journal 27 (1948), pp. 379-423, pp. 623-656.
  

Revision as of 03:42, 18 July 2012

  • Discrete Wavelet Transforms
    • Albert Boggess & Francis J. Narcowich. A First Course in Wavelets with Fourier Analysis. Prentice-Hall (2001).
    • Ingrid Daubechies. Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics (1992).
    • Michael W. Frazier. An Introduction to Wavelets Through Linear Algebra. Springer-Verlag (2001).
    • Barbara Burke Hubbard. The World According to Wavelets. AK Peters, 2nd ed. (1998)
    • Arne Jensen & Anders la Cour-Harbo. Ripples in Mathematics: The Discrete Wavelet Transform. Springer-Verlag (2001).
    • Stéphane Mallat. A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way. Academic Press (2008).
    • Yves Meyer. Ondelettes et opérateurs. Hermann (1990).
    • Martin J. Mohlenkamp & María Cristina Pereyra. Wavelets, Their Friends, and What They Can Do for You. European Mathematical Society (2000).
    • David K. Ruch & Patrick J. Van Fleet. Wavelet Theory: An Elementary Approach with Applications. Wiley (2010).
    • Gilbert Strang & Truong Nguyen. Wavelets and Filter Banks. Wellesley College, 2nd ed. (1996).
    • Patrick Van Fleet. Discrete Wavelet Transformations: An Elementary Approach with Applications. Wiley (2008).
    • David F. Walnut. An Introduction to Wavelet Analysis. Birkhäuser (2004).
    • Filip Wasilewski. Wavelet Properties Browser.
  • Fourier Analysis
    • M.A. Al-Gwaiz. Sturm-Liouville Theory and its Applications. Springer-Verlag (2008).
    • Rajendra Bhatia. Fourier Series. Mathematical Association of America (2004).
    • Anton Deitmer. A First Course in Harmonic Analysis. Springer-Verlag, 2nd ed. (2005).
    • Thomas W. Körner. Fourier Analysis. Cambridge University Press (1988).
  • Digital Image Processing
    • Rafael C. Gonzalez & Richard E. Woods. Digital Image Processing. Pearson, 3rd ed. (2008).
  • Mathematica
    • Richard J. Gaylord, Samuel N. Kamin & Paul R. Wellin. Introduction to Programming with Mathematica. Springer-Verlag (1993).
    • Roozbeh Hazrat. Mathematica: A Problem-Centered Approach, Springer-Verlag (2010).
    • Roman Maeder. Programming in Mathematica, Addison-Wesley, 2nd ed. (1991).
  • Linear Algebra and Geometry
    • Thomas Banchoff & John Wermer. Linear Algebra Through Geometry. Springer-Verlag, 2nd ed. (1992).
Personal tools
Namespaces

Variants
Actions
Navigation
Toolbox