CRN 11247: HW 6
From Classes
(Difference between revisions)
HelmutKnaust (Talk | contribs) (Created page with "'''Problem 26.''' Let $f,g:\mathbb{R}\to\mathbb{R}$ be two continuous functions. Define $h(x)=\max\{f(x),g(x)\}$ for all $x\in\mathbb{R}$. Show that $h$ is continuous on $\ma...") |
Revision as of 22:30, 8 November 2021
Problem 26. Let $f,g:\mathbb{R}\to\mathbb{R}$ be two continuous functions. Define $h(x)=\max\{f(x),g(x)\}$ for all $x\in\mathbb{R}$. Show that $h$ is continuous on $\mathbb{R}$.
Problem 27. Let $f:\mathbb{R}\to\mathbb{R}$ be continuous on $\mathbb{R}$, and assume that for all $\varepsilon>0$ there is an $N>0$ such that $|f(x)|<\varepsilon$ for all $x$ satisfying $|x|>N$. Show that $f$ is uniformly continuous on $\mathbb{R}$.