Assignments

From Classes
(Difference between revisions)
Jump to: navigation, search
(Created page with "# Let <math>A=\begin{pmatrix}1&2&3\\4&5&6\\7&8&10\end{pmatrix}</math>. Find a matrix X such that <math>X\cdot A=\begin{pmatrix}7&8&10\\4&5&6\\1&2&3\end{pmatrix}</math>. What d...")
 
Line 1: Line 1:
 
# Let <math>A=\begin{pmatrix}1&2&3\\4&5&6\\7&8&10\end{pmatrix}</math>. Find a matrix X such that <math>X\cdot A=\begin{pmatrix}7&8&10\\4&5&6\\1&2&3\end{pmatrix}</math>. What do you get if you compute <math>A\cdot X</math>?
 
# Let <math>A=\begin{pmatrix}1&2&3\\4&5&6\\7&8&10\end{pmatrix}</math>. Find a matrix X such that <math>X\cdot A=\begin{pmatrix}7&8&10\\4&5&6\\1&2&3\end{pmatrix}</math>. What do you get if you compute <math>A\cdot X</math>?
 +
# Find a 4x4 orthogonal matrix with at least 4 non-zero entries.
 
# Can you find a 3x3 orthogonal matrix with no zeroes?
 
# Can you find a 3x3 orthogonal matrix with no zeroes?

Revision as of 07:37, 10 June 2013

  1. Let \(A=\begin{pmatrix}1&2&3\\4&5&6\\7&8&10\end{pmatrix}\). Find a matrix X such that \(X\cdot A=\begin{pmatrix}7&8&10\\4&5&6\\1&2&3\end{pmatrix}\). What do you get if you compute \(A\cdot X\)?
  2. Find a 4x4 orthogonal matrix with at least 4 non-zero entries.
  3. Can you find a 3x3 orthogonal matrix with no zeroes?
Personal tools
Namespaces

Variants
Actions
Navigation
Toolbox