24178: HW 2

From Classes
(Difference between revisions)
Jump to: navigation, search
(Created page with "'''Problem 6.''' Is the statement $\quad\exists !\,x\in\mathbb{R} : (x-2=\sqrt{x+7}) \quad$ true or false? Prove your conjecture. '''Problem 7.''' Let $A,B$ and $C$ be arbitr...")
 
 
(One intermediate revision by one user not shown)
Line 2: Line 2:
 
Prove your conjecture.
 
Prove your conjecture.
  
'''Problem 7.''' Let $A,B$ and $C$ be arbitrary sets. Recall that $A\setminus B=\{x \ |\ x\in A\ \wedge\ x\not\in B\}$. We define
+
'''Problem 7.''' Let $x$, $y$, and $z$ be natural numbers. Prove or disprove: If $x+y$ is even and $y+z$ is even, then $x+z$ is even.
$A\bigtriangleup B:=(A\setminus B)\cup(B \setminus A)$.
+
Prove or disprove:
+
#$A \bigtriangleup B= B \bigtriangleup A$.
+
#$(A \bigtriangleup B)\bigtriangleup C=A \bigtriangleup (B \bigtriangleup C)$.
+
  
'''Problem 8.''' Let $A$ and $B$ be arbitrary sets. Prove or disprove the following power set relations:  
+
'''Problem 8.''' Let $x$, $y$, and $z$ be natural numbers. Prove or disprove: If $x+y$ is odd and $y+z$ is odd, then $x+z$ is odd.
#${\cal P}(A\cap B)\subseteq {\cal P}(A)\cap {\cal P}(B)$.
+
#${\cal P}(A)\cap {\cal P}(B)\subseteq {\cal P}(A\cap B)$.
+
  
'''Problem 9.'''  Given two real numbers $a<b$, the open interval $(a,b)$ is defined to be the set $\displaystyle{\{x\in\mathbb{R}\ |\ (a<x) \wedge (x<b)\}}$.
+
'''Problem 9.'''  Let $x$ be a natural number. Prove or disprove: If $x^2$ is divisible by 27, then $x$ is divisible by 9.  
  
For $n\in\mathbb{N}$, let $A_n$ be the open interval $\displaystyle{(\frac{1}{2}-\frac{1}{2n}, \frac{1}{2}+\frac{1}{3n})}$. Find $\displaystyle{\bigcup_{n\in\mathbb{N}} A_n}$ and $\displaystyle{\bigcap_{n\in\mathbb{N}} A_n}$. Confirm your conjectures by proofs.
+
'''Problem 10.''' Let $n$ be a natural number. Show that $\sqrt{n}$ is a natural number if and only if $n=k^2$ for some natural number $k$.
 
+
 
+
'''Problem 10.''' Critique the following proof. Is the proof correct or flawed? Explain!
+
 
+
Recall that a positive integer $p$ is ''prime'' if it is divisible by exactly two positive integers, namely $1$ and $p$. The five smallest primes are 2,3,5,7,11.
+
 
+
'''Theorem.''' There are infinitely many primes.
+
 
+
'''Proof:''' Suppose there are only finitely many primes, say the list of all primes is $\{p_1,p_2,p_3,\ldots, p_n\}$ for some positive integer $n$. Set
+
\[p=1+p_1\cdot p_2 \cdot p_3 \cdots p_n.\]
+
Then $p$ leaves a remainder of 1 when divided by any of the $p_n$'s and thus $p$ must be a prime not on the list of all primes.
+
  
 
[[Image:Alice3.gif]]
 
[[Image:Alice3.gif]]

Latest revision as of 14:40, 2 February 2017

Problem 6. Is the statement $\quad\exists !\,x\in\mathbb{R} : (x-2=\sqrt{x+7}) \quad$ true or false? Prove your conjecture.

Problem 7. Let $x$, $y$, and $z$ be natural numbers. Prove or disprove: If $x+y$ is even and $y+z$ is even, then $x+z$ is even.

Problem 8. Let $x$, $y$, and $z$ be natural numbers. Prove or disprove: If $x+y$ is odd and $y+z$ is odd, then $x+z$ is odd.

Problem 9. Let $x$ be a natural number. Prove or disprove: If $x^2$ is divisible by 27, then $x$ is divisible by 9.

Problem 10. Let $n$ be a natural number. Show that $\sqrt{n}$ is a natural number if and only if $n=k^2$ for some natural number $k$.

Alice3.gif

Personal tools
Namespaces

Variants
Actions
Navigation
Toolbox