The problems are due on November 8.

Problem 1. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be two continuous functions. Define

$$
h(x)=\max \{f(x), g(x)\} \text { for all } x \in \mathbb{R} .
$$

Show that h is continuous on \mathbb{R}.
Problem 2. Show that every open set on the real line is the countable union of disjoint open intervals.

Problem 3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function on \mathbb{R} so that both $\lim _{x \rightarrow \infty} f(x)=0$ and $\lim _{x \rightarrow-\infty} f(x)=0$. Show that f is uniformly continuous on \mathbb{R}.
(We say that $\lim _{x \rightarrow \infty} f(x)=L$ if for all $\epsilon>0$ there is an $x_{0} \in \mathbb{R}$ such that for all $x \in \mathbb{R}$:

$$
\left(x>x_{0} \Rightarrow|f(x)-L|<\epsilon\right) .
$$

The limit at $-\infty$ is defined analogously.)

