No books, notes etc. are allowed.
Problem 1. For which $x \in \mathbb{R}$ does the series $1+2 x+3 x^{2}+4 x^{3}+5 x^{4}+6 x^{5}+\ldots$ converge? Find the sum of the series, where it converges.

Problem 2. (a) Give the definition of compactness for a metric space.
(b) Show: If $f: X \rightarrow Y$ is a continuous function between two metric spaces X and Y, and $A \subseteq X$ is compact, then $f(A)$ is compact.

Problem 3. (a) Let A be a subset of a metric space (X, d). Define the concept " A is connected in X ".
(b) Prove or give a counterexample: If $f: X \rightarrow Y$ is a continuous function between two metric spaces X and Y, and $B \subseteq Y$ is connected, then $f^{-1}(B)$ is connected.

Problem 4. (a) Define the notion of uniform convergence of a sequence of functions.
(b) Let $f_{n}, f: X \rightarrow Y$ be functions between two metric spaces X and Y. Show: if f_{n} is continuous on X for all $n \in \mathbb{N}$, and $\left(f_{n}\right)$ converges to f uniformly on X, then f is continuous on X.

Problem 5. Show: If X is a compact metric space and $f: X \rightarrow X$ is a function satisfying

$$
d(f(x), f(y))<d(x, y) \text { for all } x \neq y \in X
$$

then f has a unique fixed point on X. A fixed point of a function f is a point $x \in X$ such that $f(x)=x$.
Hint: Does the set $\{d(x, f(x)) \mid x \in X\}$ attain its minimum?
Problem 6. (a) State the Weierstrass Approximation Theorem.
(b) Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function so that $\int_{0}^{1} x^{n} \cdot f(x) d x=0$ for all $n \in \mathbb{N} \cup\{0\}$. Use the Weierstrass Approximation Theorem to prove that $f(x)=0$ for all $x \in[0,1]$.

