The problems are due on Thursday, October 26.

For all students:

Problem 1. Let (A_n) be a sequence of closed bounded subsets in a complete metric space (X,d), such that $A_{n+1} \subseteq A_n$ for all $n \in \mathbb{N}$, and such that $\lim_{n\to\infty} \operatorname{diam} A_n = 0$. Show that $\bigcap_{n\to\infty} A_n$ consists of exactly one point.

Recall that the diameter of a bounded set A in a metric space is defined as diam $A = \sup\{d(x,y) \mid x,y \in A\}$.

Problem 2. A metric space (X, d) is called *countably compact*, if every open cover of X, which consists of **countably** many open sets, contains a finite subcover. Show that every countably compact metric space is (sequentially) compact.

Problem 3. Consider C, the normed vector space of continuous functions on the interval [0,1], endowed with the sup-norm $||f|| = \sup_{x \in [0,1]} |f(x)|$. Show that $B = \{f \in C \mid ||f|| \le 1\}$ fails to be compact.

Hint: Find a sequence (f_n) in B which satisfies $||f_n - f_m|| \ge 1$ for all $n \ne m$.

For graduate students:

Problem 1G. Show that every compact metric space is separable.

Problem 2G. 1.) Is every separable metric space compact? Give a proof or a counter example!

2.) Is every totally bounded metric space separable? Give a proof or a counter example!