The problems are due on Tuesday, November 28.

## For all students:

Problem 1. For a real number $x$, define $x^{+}=\max \{x, 0\}$ and $x^{-}=\max \{-x, 0\}$.
Let $\left(a_{n}\right)$ be a sequence of real numbers, such that $\sum a_{n}$ converges, while $\sum\left|a_{n}\right|$ diverges.

1. Show that the partial sums of $\sum a_{n}^{+}$and the partial sums of $\sum a_{n}^{-}$are unbounded increasing sequences. Note that $\lim _{n \rightarrow \infty} a_{n}^{+}=0$ and $\lim _{n \rightarrow \infty} a_{n}^{-}=0$.
2. Let $L \in \mathbb{R}$. Using the results above, show that there is a bijection $\rho: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
\sum_{n=1}^{\infty} a_{\rho(n)}=L
$$

Problem 2. Let $\left(a_{n}\right)$ be a sequence of real numbers, such that $\sum\left|a_{n}\right|$ converges, and let $\rho: \mathbb{N} \rightarrow \mathbb{N}$ be any bijection. Show that

$$
\sum_{n=1}^{\infty} a_{\rho(n)}=\sum_{n=1}^{\infty} a_{n} .
$$

## Problem 3.

1. Let $\left(c_{n}\right)_{n \in \mathbb{N}}$ be a sequence of positive numbers. Show that

$$
\liminf _{n \rightarrow \infty} \frac{c_{n+1}}{c_{n}} \leq \liminf _{n \rightarrow \infty} \sqrt[n]{c_{n}} \leq \limsup _{n \rightarrow \infty} \sqrt[n]{c_{n}} \leq \limsup _{n \rightarrow \infty} \frac{c_{n+1}}{c_{n}}
$$

2. Explain why this shows that the root test is "stronger" than the ratio test.

## For graduate students:

Problem 1+2G. Let $\left(f_{n}\right): \mathbb{R} \rightarrow[0,1]$ be a sequence of increasing functions, i.e. satisfying $f_{n}(x) \leq f_{n}(y)$ for all $x \leq y$ and all $n \in \mathbb{N}$. The problem will establish that a subsequence of $\left(f_{n}\right)$ converges pointwise on $\mathbb{R}$.

1. Show that there is a subsequence $\left(f_{n_{k}}\right)$ of $\left(f_{n}\right)$, which converges at all rational points in $\mathbb{R}$, say $\lim _{k \rightarrow \infty} f_{n_{k}}(q)=: f(q)$ for all rational numbers $q$.
2. For $x \in \mathbb{R}$ define $f(x):=\sup \{f(q) \mid q \leq x, q$ is rational $\}$. Using the monotonicity of the functions involved, show that $f(x)=\lim _{k \rightarrow \infty} f_{n_{k}}(x)$ for all $x \in \mathbb{R}$, at which $f$ is continuous.
3. Show that a further subsequence of $\left(f_{n_{k}}\right)$ converges to $f$ for all $x \in \mathbb{R}$.

Hint: How many points are there, at which $f$ is discontinuous?

