Homework 1 Introduction to Analysis

The problems are due on February 14.

Problem 1. A sequence $\left(a_{n}\right)$ is called proper, if $a_{n} \neq a_{m}$ for all $n \neq m$. Show that a proper bounded sequence converges, if $\left\{a_{n} \mid n \in \mathbb{N}\right\}$ has exactly one accumulation point.

Problem 2. Let $\epsilon>0$, and let $\left(x_{n}\right)$ be a convergent sequence of real numbers. Show that there is a Cauchy sequence $\left(r_{n}\right)$ of rational numbers satisfying $\left|x_{n}-r_{n}\right| \leq \epsilon$ for all $n \in \mathbb{N}$.

Problem 3. Let $\left(a_{n}\right)$ be a sequence of real numbers. Set

$$
b_{n}=\frac{1}{n}\left(a_{1}+a_{2}+a_{3}+\cdots+a_{n}\right) .
$$

(a) Show: If $\left(a_{n}\right)$ converges to $a \in \mathbb{R}$, then $\left(b_{n}\right)$ converges to a.
(b) Show that the converse fails.

