The problems are due on April 30.
The first two problems explore the connections between the following properties of a function $f:[a, b] \rightarrow \mathbb{R}$.

1. The function f is said to have a bounded derivative, if f is differentiable on $[a, b]$, and if there is a $M \geq 0$ such that $\left|f^{\prime}(x)\right| \leq M$ for all $x \in[a, b]$.
2. The function f is said to be a Lipschitz function, if there is a $M \geq 0$, such that $|f(x)-f(y)| \leq M|x-y|$ for all $x, y \in[a, b]$.
3. f is uniformly continuous on $[a, b]$.

Problem 1. Show that $1 . \Rightarrow 2 . \Rightarrow 3$.
Problem 2. Give examples to show that $3 . \nRightarrow 2 . \nRightarrow 1$.

Problem 3. Consider the function

$$
f(x)=\left\{\begin{array}{cc}
x+2 x^{2} \sin \left(\frac{1}{x}\right) & , \text { if } x \neq 0 \\
0 & \text {, if } x=0
\end{array}\right.
$$

Show that there is a number $z \in \mathbb{R}$ such that $f^{\prime}(z)>0$, but there does not exist a neighborhood of z in which f is increasing.

