Homework 3

Analysis

The problems are due on Wednesday, March 14.

Problem 1. Let (A_n) be a sequence of closed bounded subsets in a complete metric space (X, d), such that $A_{n+1} \subseteq A_n$ for all $n \in \mathbb{N}$, and such that $\lim_{n \to \infty} \text{diam } A_n = 0$. Show that $\bigcap_{n \to \infty}^{\infty} A_n$ consists of exactly one point.

The diameter of a bounded set A in a metric space is defined as

diam $A = \sup\{d(x, y) \mid x, y \in A\}.$

Problem 2. Consider C, the normed vector space of continuous functions on the interval [0, 1], endowed with the sup-norm $||f|| = \sup_{x \in [0,1]} |f(x)|$. Show

that $B = \{f \in C \mid ||f|| \le 1\}$ fails to be compact.

Hint: Find a sequence (f_n) in B which satisfies $||f_n - f_m|| \ge 1$ for all $n \ne m$.

Problem 3. (a) Show that every compact metric space is separable.(b) Is every separable metric space compact? Give a proof or a counter example!