The problems are due on Tuesday, November 20.

## For all students:

Problem 1. Let $X$ and $Y$ be two metric spaces. Show that $f: X \rightarrow Y$ is continuous if and only if for all subsets $A, B$ of $X$ with $\operatorname{cl}(A)=c l(B)$ in $X$, their images $f(A)$ and $f(B)$ satisfy $\operatorname{cl}(f(A))=\operatorname{cl}(f(B))$ in $Y$.

Problem 2. Show: If $f: X \rightarrow Y$ is uniformly continuous, and $\left(x_{n}\right)$ is a Cauchy sequence in $X$, then $\left(f\left(x_{n}\right)\right)$ is a Cauchy sequence in $Y$.

Is this result also true, if one only assumes that $f$ is continuous?
Problem 3. Let $(X, d)$ be a compact metric space, and $f: X \rightarrow X$ be a map satisfying

$$
d(f(x), f(y))=d(x, y) \text { for all } x, y \in X
$$

Denote by

$$
f^{n}:=\underbrace{f \circ f \ldots \circ f}_{n \text { times }} .
$$

(a) Show that $f$ is 1-1.
(b) Show that $f$ is onto. Proceed as follows: If $y \notin f(X)$, consider the sequence $\left(f^{n}(y)\right)$. Show that this sequence contains no converging subsequence.

## For graduate students:

Problem $1+2$ G. Let $\left(f_{n}\right): \mathbb{R} \rightarrow[0,1]$ be a sequence of increasing functions, i.e. satisfying $f_{n}(x) \leq f_{n}(y)$ for all $x \leq y$ and all $n \in \mathbb{N}$. The problem will establish that a subsequence of $\left(f_{n}\right)$ converges pointwise on $\mathbb{R}$.

1. Show that there is a subsequence $\left(f_{n_{k}}\right)$ of $\left(f_{n}\right)$, which converges at all rational points in $\mathbb{R}$, say $\lim _{k \rightarrow \infty} f_{n_{k}}(q)=: f(q)$ for all rational numbers $q$.
2. For $x \in \mathbb{R}$ define $f(x):=\sup \{f(q) \mid q \leq x, q$ is rational $\}$. Using the monotonicity of the functions involved, show that $f(x)=\lim _{k \rightarrow \infty} f_{n_{k}}(x)$ for all $x \in \mathbb{R}$, at which $f$ is continuous.
3. Show that a further subsequence of $\left(f_{n_{k}}\right)$ converges to $f$ for all $x \in \mathbb{R}$.

Hint: How many points are there, at which $f$ is discontinuous?

