1 Writing Down an Equation for a Line

Slope-Intercept-Form. Given the slope m and the y-intercept b of a line, an equation for the line can be written as

$$
y=m x+b .
$$

Example. Let a line have slope $m=-2$ and y-intercept $b=3$. Then the line can be written as $y=-2 x+3$.

Point-Slope-Form. Given the slope m and a point $\left(x_{0}, y_{0}\right)$ on the line, an equation for the line can be written as

$$
y-y_{0}=m\left(x-x_{0}\right) .
$$

Two-Point-Form. If you know two points $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$ on a line, its equation can be written as

$$
y-y_{0}=\frac{y_{1}-y_{0}}{x_{1}-x_{0}} \cdot\left(x-x_{0}\right) .
$$

Note that the expression $\frac{y_{1}-y_{0}}{x_{1}-x_{0}}$ is nothing else but the slope of the line.

Example. Suppose a line passes through the points $\left(x_{0}, y_{0}\right)=(1,0)$ and $\left(x_{1}, y_{1}\right)=(-2,4)$. Then we can write an equation of the line as

$$
y-0=\frac{4-0}{(-2)-1} \cdot(x-1)
$$

or simplified as:

$$
y=-\frac{4}{3}(x-1) .
$$

2 Solving Linear Equations

- Strategy: Move all " x " items to one side of the equation, the rest to the other side of the equation.
- You are allowed to do the following:

1. Add (or subtract) the same number on both sides.
2. Multiply (or divide) by the same number on both sides. Do not multiply or divide both sides by 0 !

Example 1.

$$
2 x-7=4
$$

Add 7 on both sides.

$$
\begin{array}{rlrl}
2 x-7 & =4 & +7 \\
2 x-7+7 & =4+7 & \\
2 x & =11
\end{array}
$$

Divide both sides by 2 .

$$
\begin{aligned}
2 x & =11 & \div 2 \\
x & =\frac{11}{2} &
\end{aligned}
$$

Check that $x=\frac{11}{2}$ is a solution of the original equation!
Example 2.

$$
\frac{2}{3} x-\frac{4}{5}=\frac{1}{5} x+\frac{1}{3}
$$

Add $\frac{4}{5}$ on both sides.

$$
\begin{array}{rl|l}
\frac{2}{3} x-\frac{4}{5} & =\frac{1}{5} x+\frac{1}{3} & +\frac{4}{5} \\
\frac{2}{3} x & =\frac{1}{5} x+\frac{1}{3}+\frac{4}{5}
\end{array}
$$

Subtract $\frac{1}{5} x$ on both sides.

$$
\begin{array}{rl|l}
\frac{2}{3} x & =\frac{1}{5} x+\frac{1}{3}+\frac{4}{5} & -\frac{1}{5} x \\
\frac{2}{3} x-\frac{1}{5} x & =\frac{1}{3}+\frac{4}{5}
\end{array}
$$

Simplify both sides.

$$
\begin{aligned}
\frac{2}{3} x-\frac{1}{5} x & =\frac{1}{3}+\frac{4}{5} \\
\frac{7}{15} x & =\frac{17}{15}
\end{aligned}
$$

Multiply both sides by $\frac{15}{7}$ and simplify.

$$
\begin{array}{rl|l}
\frac{7}{15} x & =\frac{17}{15} & \cdot \frac{15}{7} \\
\left(\frac{7}{15} \cdot \frac{15}{7}\right) x & =\frac{17}{15} \cdot \frac{15}{7} \\
x & =\frac{17}{7}
\end{array}
$$

Check that $x=\frac{17}{7}$ is a solution of the original equation!

3 Linear Regression: Finding the Best Line Fitting the Data - An Example

1. Start with the data table; in the example given here, the number of data points is $n=3$:

x	y
1	2
2	1
4	-2

2. Compute the average ave (x) of the x-coordinates, and the average ave (y) of the y-coordinates:

$$
\begin{aligned}
\operatorname{ave}(x) & =\left(x_{1}+x_{2}+\cdots+x_{n-1}+x_{n}\right) / n=(1+2+4) / 3=2.33 \\
\operatorname{ave}(y) & =\left(y_{1}+y_{2}+\cdots+y_{n-1}+y_{n}\right) / n=(2+1+(-2)) / 3=0.33
\end{aligned}
$$

3. Compute the deviations from the averages:

x	y	x -ave (x)	y -ave(y$)$
1	2	-1.33	1.67
2	1	-0.33	0.67
4	-2	1.67	-2.33

4. Compute $S_{x x}$ and $S_{x y}$:

$$
\begin{aligned}
S_{x x}= & \left(x_{1}-\operatorname{ave}(x)\right)^{2}+\left(x_{2}-\operatorname{ave}(x)\right)^{2}+\cdots+\left(x_{n-1}-\operatorname{ave}(x)\right)^{2}+\left(x_{n}-\operatorname{ave}(x)\right)^{2} \\
= & 4.67 \\
S_{x y}= & \left(x_{1}-\operatorname{ave}(x)\right)\left(y_{1}-\operatorname{ave}(y)\right)+\left(x_{2}-\operatorname{ave}(x)\right)\left(y_{2}-\operatorname{ave}(y)\right)+\cdots \\
& \cdots+\left(x_{n}-\operatorname{ave}(x)\right)\left(y_{n}-\operatorname{ave}(y)\right) \\
= & -6.33
\end{aligned}
$$

x	y	x-ave (x)	y-ave (y)	$(\mathrm{x}-\operatorname{ave}(\mathrm{x}))^{2}$	$(\mathrm{x}$-ave $(\mathrm{x})) \cdot(\mathrm{y}$-ave $(\mathrm{y}))$
1	2	-1.33	1.67	1.77	-2.22
2	1	-0.33	0.67	0.11	-0.22
4	-2	1.67	-2.33	2.79	-3.89
				$S_{x x}=4.67$	$S_{x y}=-6.33$

5 . The slope m of the regression line is

$$
m=\frac{S_{x y}}{S_{x x}}=\frac{-6.33}{4.67}=-1.36
$$

The y-intercept of the regression line is given by

$$
b=\operatorname{ave}(y)-m \cdot \operatorname{ave}(x)=0.33-(-1.36)(2.33)=3.50
$$

Thus the regression line has the equation

$$
y=m x+b=-1.36 x+3.50
$$

