1 Computing Velocity from Position

Velocity is change of position per time unit. (Change of position is distance traveled, denoted in miles, feet, km , or m . Thus velocity is measured in dimensions such as miles $/ \mathrm{hr}$, feet $/ \mathrm{sec}$, or $\mathrm{m} / \mathrm{sec}$.) Let's consider the following example, describing the fall of an object from an initial height of 80 m :

Time (sec)	Position (m)
0.0	80.00
0.5	78.75
1.0	75.00
1.5	68.75
2.0	60.00
2.5	48.75
3.0	35.00
3.5	18.75
4.0	0.00

During the first half-second, the object changes its position from 80 m to 78.75 m , a change of -1.25 m , consequently the average velocity during the first half-second equals

$$
\frac{78.75 \mathrm{~m}-80.00 \mathrm{~m}}{0.5 \mathrm{sec}-0.0 \mathrm{sec}}=\frac{-1.25 \mathrm{~m}}{0.5 \mathrm{sec}}=-2.5 \mathrm{~m} / \mathrm{sec}
$$

During the second half-second, the object changes its position from 78.75 m to 75.00 m , a change of -3.75 m , consequently the average velocity during the second half-second equals

$$
\frac{75.00 \mathrm{~m}-78.75 \mathrm{~m}}{1.0 \mathrm{sec}-0.5 \mathrm{sec}}=\frac{-3.75}{0.5} \frac{\mathrm{~m}}{\mathrm{sec}}=-7.5 \mathrm{~m} / \mathrm{sec} .
$$

If we continue in this fashion, we obtain the following table for the object's velocity:

Time (sec)	Velocity $(\mathrm{m} / \mathrm{sec})$
0.5	-2.5
1.0	-7.5
1.5	-12.5
2.0	-17.5
2.5	-22.5
3.0	-27.5
3.5	-32.5
4.0	-37.5

2 Computing Acceleration from Velocity

Acceleration is change of velocity per time unit. (Change of velocity is a difference of two velocities, denoted in miles $/ \mathrm{hr}$, feet $/ \mathrm{sec}, \mathrm{km} / \mathrm{hr}$, or $\mathrm{m} / \mathrm{sec}$. Thus acceleration is measured in dimensions such as miles $/ \mathrm{hr}^{2}$, feet $/ \mathrm{sec}^{2}$, or $\mathrm{m} / \mathrm{sec}^{2}$.) Let's continue our example:

From 0.5 sec to 1 sec , the object changes velocity from $-2.5 \mathrm{~m} / \mathrm{sec}$ to -7.5 $\mathrm{m} / \mathrm{sec}$, a change of $-5 \mathrm{~m} / \mathrm{sec}$; thus the acceleration during that time period is given by

$$
\frac{-7.5 \mathrm{~m} / \mathrm{sec}-(-2.5 \mathrm{~m} / \mathrm{sec})}{1.0 \mathrm{sec}-0.5 \mathrm{sec}}=\frac{-5}{0.5} \frac{\mathrm{~m} / \mathrm{sec}}{\mathrm{sec}}=-10 \mathrm{~m} / \mathrm{sec}^{2} .
$$

If you repeat the computation, you will notice that the acceleration is constant; it is indeed a fundamental property of falling objects, that their acceleration is constant. (Here we are neglecting air resistance!) Close to the surface of the earth, objects fall with a constant acceleration of about $-10 \mathrm{~m} / \mathrm{sec}^{2}$, or equivalently $-32 \mathrm{ft} / \mathrm{sec}^{2}$.

3 Reversing the Process: Computing Position from Acceleration

Suppose you stand on a platform 50 m high and throw a basketball vertically into the air with an average velocity $v(0.5)$ of $12.5 \mathrm{~m} / \mathrm{sec}$ during the first halfsecond.

The basketball experiences a constant acceleration of $-10 \mathrm{~m} / \mathrm{sec}^{2}$. Consequently its average velocity $v(1)$ during the second half-second can be computed as follows:

$$
\frac{v(1)-v(0.5)}{0.5 \mathrm{sec}}=-10 \mathrm{~m} / \mathrm{sec}^{2},
$$

so $v(1)=v(0.5)-10 \mathrm{~m} / \mathrm{sec}^{2} \cdot 0.5 \mathrm{sec}=7.5 \mathrm{~m} / \mathrm{sec}$. Since the ball's acceleration is constant, the ball loses $5 \mathrm{~m} / \mathrm{sec}$ of its velocity per half-second, leading to the following table:

Time (sec)	Velocity $(\mathrm{m} / \mathrm{sec})$
0.5	12.5
1.0	7.5
1.5	2.5
2.0	-2.5
2.5	-7.5
3.0	-12.5
3.5	-17.5
4.0	-22.5

We know the ball's initial position $y(0)=50 \mathrm{~m}$, and its velocity during the first half-second. Thus we can compute the position $y(0.5)$ of the ball after the first half-second as follows:

$$
\frac{y(0.5)-y(0)}{0.5 \mathrm{sec}}=12.5 \mathrm{~m} / \mathrm{sec}
$$

so $y(0.5)=y(0)+12.5 \mathrm{~m} / \mathrm{sec} \cdot 0.5 \mathrm{sec}=56.25 \mathrm{~m}$. Repeating the procedure leads to the following table:

Time (sec)	Position (m)
0.0	50.00
0.5	56.25
1.0	60.00
1.5	61.25
2.0	60.00
2.5	56.25
3.0	50.00
3.5	41.25
\cdots	\cdots

I hope this example looks familiar!

