The problems are due on February 12. **Problem 1.** Let S be a non-empty set, which is bounded from above. Show that there is a sequence (s_n) of elements in S that converges to the supremum of S. **Problem 2.** A sequence (a_n) is called decreasing if $a_n \leq a_m$ whenever $n \geq m$. Show that every **bounded** decreasing sequence converges. **Problem 3.** Let r be a real number. Show that there is a sequence (q_n) of rational numbers such that (q_n) converges to r. **Problem 4.** Let (a_n) be a sequence of real numbers. Set $$b_n = \frac{1}{n} (a_1 + a_2 + a_3 + \dots + a_n).$$ - (a) Show: If (a_n) converges to $a \in \mathbb{R}$, then (b_n) converges to a. - (b) Show that the converse fails.