Homework 2 Introduction to Analysis

The problems are due on March 5.

The problems below use the following definitions: Let $\left(a_{n}\right)$ be a bounded sequence of real numbers. We define the limes inferior and limes superior of the sequence as

$$
\liminf _{n \rightarrow \infty} a_{n}:=\lim _{k \rightarrow \infty}\left(\inf \left\{a_{n} \mid n \geq k\right\}\right)
$$

and

$$
\limsup _{n \rightarrow \infty} a_{n}:=\lim _{k \rightarrow \infty}\left(\sup \left\{a_{n} \mid n \geq k\right\}\right)
$$

Problem 1. Explain why the numbers $\liminf _{n \rightarrow \infty} a_{n}$ and $\limsup _{n \rightarrow \infty} a_{n}$ are welldefined for every bounded sequence $\left(a_{n}\right)$.

Problem 2. Show that a bounded sequence $\left(a_{n}\right)$ converges if and only if

$$
\liminf _{n \rightarrow \infty} a_{n}=\limsup _{n \rightarrow \infty} a_{n}
$$

Problem 3. Let $\left(a_{n}\right)$ be a bounded sequence of real numbers. Show that $\left(a_{n}\right)$ has a subsequence that converges to $\lim \sup a_{n}$.

$$
n \rightarrow \infty
$$

Problem 4. Let $\left(a_{n}\right)$ be a bounded sequence of real numbers, and let $\left(a_{n_{k}}\right)$ be one of its converging subsequences. Show that

$$
\liminf _{n \rightarrow \infty} a_{n} \leq \lim _{k \rightarrow \infty} a_{n_{k}} \leq \limsup _{n \rightarrow \infty} a_{n}
$$

