Homework 2 Introduction to Analysis Spring 2003

The problems are due on March 5.

The problems below use the following definitions: Let (a,) be a bounded
sequence of real numbers. We define the limes inferior and limes superior of
the sequence as

hgriiorgfan = kh_>rrolo (inf{a, | n > k}),
and

limsup a,, := khjg() (sup{a, | n > k}).
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Problem 1. Explain why the numbers liminf a,, and limsupa, are well-
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defined for every bounded sequence (a,,).
Problem 2. Show that a bounded sequence (a,,) converges if and only if

lim inf a,, = lim sup a,,.
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Problem 3. Let (a,) be a bounded sequence of real numbers. Show that
(a,) has a subsequence that converges to lim sup a,.
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Problem 4. Let (a,) be a bounded sequence of real numbers, and let (a,, )
be one of its converging subsequences. Show that

m a,, <limsupa,.
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