The problems are due on Monday April 7.

Problem 1. Let ( $x_{n}$ ) be a given sequence. Show that the set of subsequences of $\left(x_{n}\right)$ has the same cardinality as the set of real numbers.

Problem 2. We say that a real number $x$ is algebraic if $x$ is a root of a polynomial with integer coefficients.

Thus $x$ is algebraic if it satisfies $P(x)=0$ for some polynomial

$$
P(z)=\sum_{k=0}^{n} a_{k} z^{k}
$$

with $n \in \mathbb{N} \cup\{0\}$ and $a_{k} \in \mathbb{Z}$ for $k=0,1, \ldots, n$. Clearly, all rational numbers are algebraic; $x=-\sqrt{2}$ is another example of an algebraic number, since it satisfies the polynomial equation $x^{2}-2=0$.

Show that the set of algebraic numbers is countable.
Problem 3. Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$, and define $g:[a, b] \rightarrow$ $\mathbb{R}$ by

$$
g(x)=\sup \{f(t) \mid a \leq t \leq x\} .
$$

Show that $g$ is continuous on $[a, b]$.
Problem 4. Let $a<b$ be real numbers. Suppose the function $f:(a, b) \rightarrow \mathbb{R}$ is uniformly continuous on the open interval $(a, b)$. Then $f$ can be defined at the endpoints $a$ and $b$ in such a way that the extension $f:[a, b] \rightarrow \mathbb{R}$ is continuous on the closed interval $[a, b]$.

