The following lemma is the crucial ingredient in the proof of Theorem 5.6 in *Gaughan*, *Introduction to Analysis*.

Lemma Let $f : [a,b] \to \mathbb{R}$ be a bounded function with $|f(x)| \le M$ for all $x \in [a,b]$. Let $\epsilon > 0$ be given, and let P_0 be a partition of [a,b] with n+1 elements. Let $\delta = \frac{\epsilon}{8Mn}$. Then for any partition P of [a,b] with mesh $\mu(P) < \delta$

 $\mathcal{U}(P) < \mathcal{U}(P \cup P_0) + \epsilon/4$ and $\mathcal{L}(P) > \mathcal{L}(P \cup P_0) - \epsilon/4.$

Proof: We will only prove the first inequality; the proof of the second inequality is analogous. Let $\epsilon > 0$ be given, and let partitions P_0 and $P = \{z_0, z_1, \ldots, z_k\}$ be given as in the statement of the lemma.

For the remainder of the proof we will call an interval $[z_{i-1}, z_i]$ infected, if $(z_{i-1}, z_i) \cap P_0 \neq \emptyset$. Note that at most *n* intervals are infected!

Let $M_i = \sup\{f(t) : t \in [z_{i-1}, z_i]\}$ for i = 1, ..., k. On *non-infected* intervals, the "contributions" towards the upper sum with respect to P and $P \cup P_0$ are the same, namely $M_i \cdot (z_i - z_{i-1})$.

Let us now consider an *infected* interval $[z_{i-1}, z_i]$. Let $(z_{i-1}, z_i) \cap P_0 = \{x_i^i, \ldots, x_{m_i-1}^i\}$. Set $x_0^i = z_{i-1}$ and $x_{m_i}^i = z_i$. We define $N_j^i = \sup\{f(t) : t \in [x_{j-1}^i, x_j^i]\}$ for $j = 1, \ldots, m_i$. The contribution towards the upper sum with respect to P is still given by $M_i \cdot (z_i - z_{i-1})$, while the contribution towards the upper sum with respect to the finer partition $P \cup P_0$ is now given by

$$\sum_{j=1}^{m_i} N_j \cdot (x_j^i - x_{j-1}^i)$$

Note that we have the "trivial" estimate

$$M_i \leq N_j^i + 2M$$
 for all $j = 1, \dots, m_i$.

Let $A = \{i : [z_{i-1}, z_i] \text{ is non-infected} \}$ and let $B = \{i : [z_{i-1}, z_i] \text{ is infected} \}$. We are ready to deduce the desired estimate:

$$\begin{aligned} \mathcal{U}(P) &= \sum_{i=1}^{k} M_{i}(z_{i} - z_{i-1}) \\ &= \sum_{i \in A} M_{i}(z_{i} - z_{i-1}) + \sum_{i \in B} M_{i}(z_{i} - z_{i-1}) \\ &\leq \sum_{i \in A} M_{i}(z_{i} - z_{i-1}) + \sum_{i \in B} \sum_{j=1}^{m_{i}} (N_{j}^{i} + 2M) \cdot (x_{j}^{i} - x_{j-1}^{i}) \\ &< \sum_{i \in A} M_{i}(z_{i} - z_{i-1}) + \sum_{i \in B} \left(\sum_{j=1}^{m_{i}} N_{j}^{i} \cdot (x_{j}^{i} - x_{j-1}^{i}) + 2M\delta \right) \\ &\leq \sum_{i \in A} M_{i}(z_{i} - z_{i-1}) + \left(\sum_{i \in B} \sum_{j=1}^{m_{i}} (N_{j}^{i} \cdot (x_{j}^{i} - x_{j-1}^{i}) \right) + 2M\delta n \\ &\leq \mathcal{U}(P \cup P_{0}) + \epsilon/4. \end{aligned}$$

November 22, 2000