(1) Let $x \in P(B \backslash A) \backslash\{\phi\}$, Thus $X \subseteq B \backslash A$ and $x \neq \phi$. let $y \in X$. Then $y \in B$ and If A; thus $X \nsubseteq A$. Since $X \subseteq B$, it follows that $X \in \mathcal{P}(B) \backslash Y(A)^{\prime}$.
(2) $\cup M_{n}=Z t$
" \leq " obvious since $M_{M} \subseteq \mathbb{Z} \quad \forall u \in \mathbb{N}$
"?" Note that if $z=0, z \in M_{1}$; if $z \neq 0$, then $z \in M_{|z|}$

$$
\begin{aligned}
& \qquad M_{n}=\{0\} \\
& " \leq " \text { If } z \neq 0 \text {, then } z \notin M_{z z 1} \text {, thus } \\
& " \geq \text { " } \neq \cap M_{n} \text { obvious since } O \in M_{n} \forall u \in \mathbb{N} .
\end{aligned}
$$

(4) Induction step: let $x \in \mathbb{N}$ be given

Suppose all $k \leq n$ can be written as product of primes. If $x+1$ is prime, we are done; so let's assume $n+1$ is not prime. Then $n+1=a \cdot b$ for sone $a, b \in \mathbb{N}$ with $1<a \leq m$ and $1<b \leq n$. B, on induction hnpothatis we can wite both a $a n d$ b as products of r^{\prime} mes:

$$
a=p_{1} \cdot p_{2} \cdot \cdots p_{j} ; b=q_{i} q_{2} \cdots q_{k}
$$

Therefore $n+1=p_{1} \cdot p_{2} \cdots p_{j} \cdot q_{1} \cdots q_{k}$ is a product of mines.
(5) (a) reflexivity $a \sim a$ for all $a \in Z$

Since $a=1$. a
symmetry $x \quad 4 \sim 2$ but 2×4 auti-symm $X \quad 4 \sim-4$ and $-4 \sim 4$. transitivid \quad If $a=k b$ and $b=l c$,
then $a=(k \cdot l) c$ then $a=(k \cdot l) c \quad($ with $k \cdot l \in \mathbb{Z})$
(b)

$$
\begin{aligned}
& \frac{\text { reflexivity }}{\text { symmetry }} \times \quad 2 \nsim 2 \\
& \text { anti-syun. } \quad 4 \sim 2 \text { but } 2 x 4 \\
& \text { implies } a=(p q) a \text { and } b \sim q a \\
& \text { inge } p q \neq 1,
\end{aligned}
$$ this implies $a=0$ and therefore $b=0$.

trausitivin x the product of 2 . primes is not a prime number.

