The assignment is due at the beginning of class on February 13, 2006.

Problem 1 (10 points) Negate the following statement: “All dogs have three legs, or there is a cat with two tails.”

Problem 2 (10 points) In each case, give an example, or explain why such an example cannot exist:

- Is there a predicate $A(x, y)$ such that the statement
 \[
 \forall x \exists y : A(x, y)
 \]
 is true, while the statement
 \[
 \exists y \forall x : A(x, y)
 \]
 is false?

- Is there a predicate $A(x, y)$ such that the statement
 \[
 \exists y \forall x : A(x, y)
 \]
 is true, while the statement
 \[
 \forall x \exists y : A(x, y)
 \]
 is false?

Problem 3 (10 points) A clothing store advertises: “For every customer we have a rack of clothes that fit.”

- Write the statement above using quantifier(s) and predicate(s).
- Negate the sentence using quantifier(s) and predicate(s).
- Write the negation in the form of an English sentence.

Problem 4 (10 points) You have seen how to generate compound statements using the four connectives \neg, \lor, \land and \Rightarrow. This problem addresses the question whether all four connectives are necessary.

- Use a truth table to show that $A \Rightarrow B$ is equivalent to $\neg A \lor B$.
- Show that $A \land B$ can be written using only the connectives \neg and \lor.

Thus the two connectives \neg and \lor suffice to generate all compound statements. It is possible to further reduce to only one connective, albeit a different one: Let us define the new connective NAND by setting

\[
A \text{ NAND } B \iff \neg (A \land B).
\]

- Show that all four connectives \neg, \lor, \land and \Rightarrow can be written using only the NAND-connective.