The assignment is due at the beginning of class on April 3, 2006.

Problem 1 (10 points) Let \(R \) and \(S \) be two relations on \(\mathbb{R} \): \(R = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y < x^2\} \) and \(S = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y = 2x - 1\} \). Find \(S \circ R \) and \(R \circ S \).

Problem 2 (10 points) Let \(R \) be a relation from \(A \) to \(B \). For an element \(b \in B \) define the set \(R_b := \{a \in A \mid (a, b) \in R\} \). Show \(\bigcup_{b \in B} R_b = \text{Dom } R \).

Problem 3 (10 points) Define a relation \(R \) on \(\mathbb{R} \) as follows: \(a \, R \, b \) if \(a - b \) is irrational. Prove or disprove: \(R \) is (a) reflexive, (b) symmetric, (c) transitive.

Problem 4 (10 points) Let \(K \) be the following subset of \(\mathbb{Z} \times \mathbb{Z} \):

\[K = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid y \neq 0\}, \]

and define a relation \(\sim \) on \(K \) by setting \((a, b) \sim (c, d) \) if \(ad = bc \). Show that \(\sim \) is an equivalence relation on \(K \).