The assignment is due at the beginning of class on April 26, 2006.

- **Problem 1 (10 points)** 1. Find a function whose domain is the set of real numbers \mathbb{R} and whose range is the set of rational numbers \mathbb{Q} .
 - 2. Find a function whose domain is the set of natural numbers \mathbb{N} and whose range is the set of integers \mathbb{Z} .

Problem 2 (10 points) Prove or disprove: If f is a function from A to B, and if f^{-1} denotes its inverse relation, then

- 1. $(x, x) \in (f^{-1} \circ f)$ for all $x \in A$.
- 2. $(x,x) \in (f \circ f^{-1})$ for all $x \in B$.
- **Problem 3 (10 points)** 1. Find functions $f : B \to C$, $g : A \to B$ and $h : A \to B$ such that $f \circ g = f \circ h$, yet $g \neq h$.
 - 2. Suppose $f : A \to B$ is a function with range(f) = B. Prove or disprove: If $g : B \to C$ and $h : B \to C$ satisfy $g \circ f = h \circ f$, then g = h.

Problem 4 (10 points) Let A and B be sets with m and n elements respectively. What is the probability that a relation from A to B chosen at random is a function?

© April 19, 2006; edited April 24, 2006