Problem: Let $\underline{a} < \overline{a}$ and $\underline{b} < \overline{b}$ be real numbers, and let R denote the rectangle

$$R = \{ (x, y) \in \mathbb{R}^2 \mid \underline{a} \le x \le \overline{a}, \ \underline{b} \le y \le \overline{b} \}.$$

Denote by \mathcal{H} the collection of all rectangles S such that (1) S is contained in R, (2) S has sides parallel to the coordinate axes, and (3) S has positive area.

Show that every non-empty subset \mathcal{K} of \mathcal{H} has a least upper bound.

Proof. Let $\mathcal{K} \subseteq \mathcal{H}, \mathcal{K} \neq \emptyset$ be given. For a suitable index set Λ we can describe \mathcal{K} as $\mathcal{K} = \{S_{\lambda} \mid \lambda \in \Lambda\}$, where each rectangle S_{λ} is of the form

$$S_{\lambda} = \{ (x, y) \in \mathbb{R}^2 \mid \underline{x}_{\lambda} \le x \le \overline{x}_{\lambda}, \ \underline{y}_{\lambda} \le y \le \overline{y}_{\lambda} \}$$

for suitable real numbers $\underline{a} \leq \underline{x}_{\lambda} < \overline{x}_{\lambda} \leq \overline{a}$, and $\underline{b} \leq \underline{y}_{\lambda} < \overline{y}_{\lambda} \leq \overline{b}$.

We define

$$S = \{ (x, y) \in \mathbb{R}^2 \mid \underline{x} \le x \le \overline{x}, \ \underline{y} \le y \le \overline{y} \},\$$

where $\underline{x} = \text{glb}\{\underline{x}_{\lambda} \mid \lambda \in \Lambda\}, \ \overline{x} = \text{lub}\{\overline{x}_{\lambda} \mid \lambda \in \Lambda\}, \ \underline{y} = \text{glb}\{\underline{y}_{\lambda} \mid \lambda \in \Lambda\}, \ \text{and} \ \overline{y} = \text{lub}\{\overline{y}_{\lambda} \mid \lambda \in \Lambda\}.$

We claim that S is the least upper bound of $\overline{\mathcal{K}}$. Since $\underline{x} \leq \underline{x}_{\lambda} \leq \overline{x}_{\lambda} \leq \overline{x}$ and $\underline{y} \leq \underline{y}_{\lambda} \leq \overline{y}_{\lambda} \leq \overline{y}$ for all $\lambda \in \Lambda$, S is indeed an upper bound for \mathcal{K} . Now suppose

$$S' = \{(x, y) \in \mathbb{R}^2 \mid \underline{x}' \le x \le \overline{x}', \ \underline{y}' \le y \le \overline{y}'\}$$

is another upper bound for \mathcal{K} . Then $S_{\lambda} \subseteq S'$ for all $\lambda \in \Lambda$, and therefore, using the definition of $\underline{x}, \overline{x}, \underline{y}$, and \overline{y} as least upper bounds and greatest lower bounds, respectively, it follows that $\underline{x}' \leq \underline{x} \leq \overline{x} \leq \overline{x}'$ and $y' \leq y \leq \overline{y} \leq \overline{y}'$, implying that $S \subseteq S'$.