A SIMPLE PROOF THAT π IS IRRATIONAL

IVAN NIVEN (Bull AMS 53 (1947), 509)
Let $\pi=a / b$, the quotient of positive integers. We define the polynomials

$$
\begin{gathered}
f(x)=\frac{x^{n}(a-b x)^{n}}{n!} \\
F(x)=f(x)-f^{(2)}(x)+f^{(4)}(x)-\cdots+(-1)^{n} f^{(2 n)}(x)
\end{gathered}
$$

the positive integer being specified later. Since $n!f(x)$ has integral coefficients and terms in x of degree not less than $n, f(x)$ and its derivatives $f^{(j)}(x)$ have integral values for $x=0$; also for $x=\pi=a / b$, since $f(x)=f(a / b-x)$. By elementary calculus we have

$$
\frac{d}{d x}\left\{F^{\prime}(x) \sin x-F(x) \cos x\right\}=F^{\prime \prime}(x) \sin x+F(x) \sin x=f(x) \sin x
$$

and

$$
\begin{equation*}
\int_{0}^{\pi} f(x) \sin x d x=\left[F^{\prime}(x) \sin x-F(x) \cos x\right]_{0}^{\pi}=F(\pi)+F(0) \tag{1}
\end{equation*}
$$

Now $F(\pi)+F(0)$ is an integer, since $f^{(j)}(\pi)$ and $f^{(j)}(\pi)$ are integers. But for $0<x<\pi$,

$$
0<f(x) \sin x<\frac{\pi^{n} a^{n}}{n!}
$$

so that the integral in (1) is positive but arbitrarily small for n sufficiently large. Thus (1) is false, and so is our assumption that π is rational.

PURDUE UNIVERSITY

